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Abstract. The 1D Schr̈odinger equation with meromorphic potentials are considered. It is
shown that any fundamental solution constructed for such potentials has a property to depend
in some particular way on an arbitrary meromorphic functionf (x). A family of fundamental
solutions created in this way can be reproduced by multiplying some fixed member of the family by
appropriate ¯h-dependent constants. This freedom allows for a proper construction of fundamental
solutions at simple and double poles of considered potentials. It expresses the fact that any change
of variablex → y = y(x) keeping the form of 1D Schrödinger equation keeps invariant the form of
the fundamental solutions as well. In fact there is one-to-one correspondence between the functions
f (x) and the Schwarzian ofy(x). Since any fundamental solution is Borel summable it means also
that the effect of the change of variable in fundamental solutions can be recoverd by multiplying
the ‘initial’ fundamental solutions by suitably chosen ¯h-dependent constants and Borel resumming
the corresponding semiclassical expansions. This explains why a change of variable can improve
JWKB formulae. However, it is shown also that a change of variable itself cannot provide us with
the exact JWKB formulae.

1. Introduction

A change of variable in the 1D Schrödinger equation is one of the basic techniques used
to solve 1D problems (see [12], for example). In the context of semiclassical (JWKB)
approximation the procedure is in fact a main ingredient of Fröman and Fr̈oman’s approach to
the 1D Schr̈odinger equation [3, 4] with the aim of getting improved JWKB quantization
formulae [4–6]. Sometimes, a suitable change of variable provides us with JWKB-like
formulae solving the problem of energy spectra even exactly [4]. No doubts, however, that
the latter possibility depends totally on a potential considered and a changing variable plays
in such cases only an auxiliary role [11].

A change of variables is also an essential ingredient of a more general approach to the
semiclassical approximations formulated by Maslov and his collaborators [13]. In the context
of the latter approach the change-of-variable procedure is an inherent part of the continuation
procedure of semiclassical series defined originally in some domain of the configuration space
to another domain of the space. The relevant variable transformations used in the Maslov
method are the canonical ones (in the sense of classical mechanics).

To establish clearly the relations as well as differences between the Maslov approach and
the consideration performed in this paper, the former is discussed in some detail in appendix A.
It is argued there that using fundamental solutions as we do in our paper is equivalent to the
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method of Maslovet al in the semiclassical regime of the considered 1D problems but has many
advantages over the Maslov procedure in the remainder of our investigations. In particular,
the problem of Borel resummation central for our paper cannot be put and considered properly
ignoring the existence of the fundamental solutions and their properties. After all, the method
of Maslovet al is purely asymptotic from the very begining and any problem of resummation
of the semiclassical series used in the method has not been considered as yet.

In particular, from the discussion of appendix A it follows clearly that the change-of-
variable procedure considered in our paper does not have much to do with the canonical
transformations used as a change of variable in the Maslov asymptotic method. The latter are
the global Fourier transformations of wavefunctions whilst the former are the local point ones.

An improvement of the standard JWKB formulae achieved by the changing variable
procedure appears as corrections typically having the form of an additional ¯h-dependent term
in emerging effective potentials [1, 2, 4–6]. Since in all these cases of changing variable the
standard JWKB formulae can be easily restored simply by ¯h-expansions of the improved ones,
the latter seems to be some kind of hidden resummation of a partial (in the case of improvements
only) or a full (when exact formulae emerge) standard semiclassical expansion corresponding
to considered cases.

It is the aim of this paper to show that indeed this hidden resummation mentioned
above really takes place whenever the change-of-variable procedure is applied to so-called
fundamental solutions to the 1D Schrödinger equation [8,9] and that the effect of such a change
of variable is equivalent to the Borel resummation of standard semiclassical expansions of the
fundamental solutions multiplied by appropriately chosen ¯h-dependent constants.

A discussion of the fundamental solutions in the above context is essential since these
solutions are the only ones with the property of being Borel summable [7]. Despite their
rareness, the fundamental solutions when collected into a full set allow us to solve any 1D
problem [8,9] (see also a discussion below).

Because of the way in which a change of variable affects the fundamental solutions, a class
of potentials which seems to be most natural for the corresponding discussing is the class of
meromorphic potentials. This choice also enforces a suitable limitation of a class of variable
transformations.

This paper is organized as follows. In the next section the fundamental solutions and their
use are recalled. It is shown that there is a functional freedom in defining the solutions not
affecting their Dirac form. In section 3 the analytic properties of the fundamental solutions
and their dependence on the functional freedom mentioned above are discussed. In section 4
the standard semiclassical expansions of fundamental solutions and their properties, including
their Borel summability, are reconsidered. It is shown that the functional freedom of the
fundamental solutions is a freedom of multiplying them by suitably chosen ¯h-dependent
constants holomorphic at ¯h = 0 and next restoring this functional freedom by the Borel
resummation. In section 5 a class of variable transformations is discussed. It is shown that the
net result of these transformations is to reproduce the functional freedom of the fundamental
solutions discussed in the previous section. The Borel resummation aspects of a change-of-
variable operation is also examined in this section. In section 6 the impossibility of achieving
the exact JWKB formulae by a change-of-variable operation itself is shown. We conclude with
section 7.

2. Stokes graphs and solutions they define

A standard way to introduce the fundamental solutions is a construction of a Stokes graph [7–9]
for a given meromorphic potentialV (x) (the latter is assumed to be independent of the Planck
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constanth̄). Such a construction, according to Fröman and Fr̈oman [3] and Fedoriuk [17], can
be performed in the following way.

LetZ denote a set of all the points of thex-plane at whichV (x) has its single and double
poles. Letf (x) be some other meromorphic function ofx with none of its double pole being
contained inZ. Let δ(x) be a meromorphic function, the unique singularities of which are
double poles at the points collected byZ with the coefficients at all the poles equal to1

4
each. The latter function can be constructed in general with the help of the Mittag–Leffler
theorem [18]. But in the case of a finite number of points contained inZ, δ(x) is simply a
finite sum of double poles (with the coefficients equal to1

4 each) over all the points ofZ.
Consider now a function

q̃(x, h̄2) = V (x) + h̄2f (x) + h̄2δ(x)− E (1)

with E as the energy parameter which is assumed to be real.
It follows from the above assumptions that among all singularities ofq̃(x, h̄2) the simple

poles can be provided byf (x) only.
The presence and role of theδ-term in (1) are explained below. This term contributes to

(1) if and only when the corresponding potentialV (x) contains simple or second-order poles.
(Otherwise the correspondingδ-term is put to zero). We shall call it the Langer term.

The Stokes graph corresponding to the functionq̃(x, h̄2) consists now of Stokes lines
emerging from roots (turning points) or simple poles ofq̃(x, h̄2). The points of the Stokes
lines satisfy one of the following equations:

R
∫ x

xi

√
q̃(x, h̄2) dy = 0 (2)

with xi being a root or a simple pole ofq̃(x, h̄2).
The Stokes lines which are not closed end at these points of thex-plane (i.e. have the latter

points as the boundaries) for which an action integral in (2) becomes infinite. Of course such
points are singular for̃q(x, h̄2) and can be its finite poles or its poles lying at infinity.

Each such singularityx0 of q̃(x, h̄2) defines a domain called a sector. This is the connected
domain of thex-plane bounded by the Stokes lines andx0 itself, with the latter point also being
a boundary for the Stokes lines or being an isolated boundary point of the sector (as it is in the
case of the second-order pole).

In each sector the LHS in (2) is only positive or negative.
Consider now the Schrödinger equation:

9 ′′(x)− h̄−2q(x)9(x) = 0 (3)

whereq(x) = V (x)− E (we have put the massm in (3) to be equal to12).
Let us assume that a singularityx0 of q̃(x, h̄2) does not coincide with any of a second-order

pole off (x). Then, following Fr̈oman and Fr̈oman (see also appendix B), one can define in
each sectorSk having a singular pointx0 at its boundary a solution of the form:

9k(x) = q̃− 1
4 (x)·eσ

h̄
W(x)·χk(x) k = 1, 2, . . . (4)

where:

χk(x) = 1 +
∑
n>1

(
−σh̄

2

)n ∫ x

x0

dξ1

∫ ξ1

x0

dξ2 . . .

∫ ξn−1

x0

dξn ω(ξ1)ω(ξ2) . . . ω(ξn)

×(1− e−
2σ
h̄
(W(x)−W(ξ1)))(1− e−

2σ
h̄
(W(ξ1)−W(ξ2))) · · · (1− e−

2σ
h̄
(W(ξn−1)−W(ξn)))

(5)
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with

ω(x) = δ(x) + f (x)

q̃
1
2 (x, h̄2)

− 1

4

q̃ ′′(x, h̄2)

q̃
3
2 (x, h̄2)

+
5

16

q̃ ′2(x, h̄2)

q̃
5
2 (x, h̄2)

(6)

and

W(x) =
∫ x

xi

√
q̃(ξ, h̄2) dξ (7)

wherexi is a root ofq̃(x, h̄2) lying at the boundary ofSk.
In (4) and (5) a signσ (= ±1) and an integration path are chosen in such a way to have:

σR(W(ξj )−W(ξj+1)) 6 0 (8)

for any ordered pair of integration variables (withξ0 = x). Such a path of integration is then
called canonical.

The Langerδ-term appearing in (6) and in (7) is necessary to ensure all the integrals in (5)
converge whenx0 is a first- or a second-order pole ofq̃(x, h̄2) or when solutions (4) are to be
continued to such poles. It follows from (6) that each such a polex0 demands a contribution to
δ(x) of the form(2(x−x0))

−2, as has been already assumed in the corresponding construction
of δ(x). We have also noticed earlier that the latter construction can be performed in general
with the help of the Mittag–Leffler theorem. In practice, however,δ(x) can be guessed very
frequently once the explicit form of̃q(x, h̄2) is known (see [11] and appendix D, for example).

The constructions (4)–(7) have been performed by Fröman and Fr̈oman [3] with the help of
the change-of-variable procedure when the contributions ofδ(x) andf (x) to q̃(x, h̄2) emerge
as a result of this procedure. This construction suggests, however, that there must be room to
introduce to solution (4) a sumδ(x)+f (x) as its free parameter independent of any change-of-
variable procedure. In appendix B we show that indeed this is the case and the constructions
of Fröman and Fr̈oman as well as the ones in (4)–(7) simply make use of this freedom.

3. Fundamental solutions and their properties as functionals ofV (x) and f (x)

It is clear that the poles ofV (x) andf (x) are also the singular points for each of the three
factors of the representation (4) for the solutions9k(x, h̄). However, since the latter satisfy the
Schr̈odinger equation (3) only the singularities of the potentialV (x) can affect (and they do!)
the holomorphicity of9k(x, h̄) at these points, i.e., at the singular points off (x) which do
not coincide with those ofV (x) all 9k(x, h̄) have to be analytical. But, by their construction,
9k(x, h̄) which have been defined at the latter points vanish at these points together with their
first derivatives. It means that all these9k(x, h̄) have to vanish identically. (In fact it is the
third factor of these solutions in (4) which vanishes identically).

An important conclusion which follows from the above discussion is that the constructions
of9k(x, h̄) in the sectors corresponding to these singular points off (x)which do not coincide
with those ofV (x) can be neglected, i.e., we are left only with the solutions generated by the
sectors defined by the genuine singularities of these solutions coinciding with those ofV (x).

Our initial assumption thatx0 differs from any double pole off (x) is naturally related to
the fact that in general the solutions (4)–(7) cannot be constructed at such poles even formally
because the integrals in RHS of (5) are divergent at these poles. Contrary to the second-
order poles ofV (x), the latter divergences cannot be compensated, as is seen from (6), by the
appropriate Langer term different fromf (x) itself. If, however, the latter possibility happens
then the coefficient at each double pole off (x) would have to be equal to14. But then the
fundamental solutions constructed at these poles again have to vanish identically for the reasons
discussed above.
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Among all the singularities ofV (x) there are simple poles which have to be distinguished
in our discussion. This is because the sectors determined by these singularities are ¯h-dependent
(this dependence is introduced by the Langer term) and shrink to points when ¯h → 0. (The
limit points are of course the actual positions of the simple poles themselves as the singularities
of V (x)). Because of that the solutions (4)–(7) constructed in these sectors differ from the
remaining ones in their properties (they are not Borel summable, for example, see appendix C)
and therefore only the latter will be investigated further.

Therefore, we consider as fundamental solutions9k(x, h̄) only those defined by (4)–(7)
which are constructed at all the poles ofV (x) (including that at infinity) except its simple ones.

The following are the properties of the fundamental solutions.

(1) In a domainDk of the x-plane where condition (8) is satisfied (the so-called canonical
domain) the series in (5) definingχk is uniformly convergent. χk itself satisfies the
following initial conditions:

χk(x0) = 1 and χ ′k(x0) = 0 (9)

corresponding to the equation:

χk(x) = 1− σh̄
2

∫ x

x0

dy ω(y)χk(y)− σh̄
2
q̃−

1
2 (x)χ ′k(x) (10)

this function has to obey as a consequence of the Schrödinger equation (3) and the initial
conditions (9).

(2) The fundamental solution9k(x, h̄) defined in the sectorSk and continued to the canonical
domainDk (Sk ⊂ Dk) has there the following two basic properties:

(a) It can be expanded inDk into a standard semiclassical series obtained by iterating
equation (10) and taking into account the initial conditions (9);

(b) The emerging semiclassical series is Borel summable inSk to the solution itself.

(3) The fundamental solutions are pairwise independent and collected into a full set they allow
one to solveany1D problem.

Let us note also that the fundamental solutions seem to be distinguished by the property
(b) above, i.e., they seem to be the unique solutions to the Schrödinger equation (3) with this
property at least for the polynomial potentials [7]. The property (b) has been proven earlier
for the polynomial potentials [8] and for the meromorphic ones it is proven in appendix C.

4. Standard semiclassical expansions and Borel summability of fundamental solutions

By a standard semiclassical expansion forχ we mean the following series:

χ(x) ∼ C(h̄)
∑
n>0

(
−σh̄

2

)n
κn(x)

κ0(x) = 1

κn(x) =
∫ x

x0

dξn D̃(ξn)
∫ ξn

x0

dξn−1 D̃(ξn−1) . . .

∫ ξ3

x0

dξ2 D̃(ξ2)

∫ ξ2

x0

dξ1 (q̃
− 1

4 (ξ1)(q̃
− 1

4 (ξ1))
′′

+q̃−
1
2 (ξ1)(δ(ξ1) + f (ξ1))) n = 1, 2, . . .

(11)

with

D̃(x) = q̃− 1
4 (x, h̄2)

d2

dx2
q̃−

1
4 (x, h̄2) + q̃−

1
2 (x, h̄2)(δ(x) + f (x)) (12)
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where

C(h̄) =
∑
n>0

Cn

(
−σh̄

2

)n
(13)

and where the choices of a pointx0 and constantsCk, k = 1, 2, . . . , are arbitrary. However, for
the particularχk (as defined by (5), for example) these choices are of course definite (ifx0 is
given by the lower limit of the integrations in the expansion (5) thenC(h̄) ≡ 1). Nevertheless,
even in such cases the choice ofx0 can be arbitrary whilst the emerging corresponding constants
Ck depend somehow onx0 [7].

The representation (11) is standard in a sense that any other one can be brought to (11) by
redefinitions of the constantsCk. Therefore, any semiclassical expansion can be uniquely given
by fixing x0 and the constantsCk. Conversly, multiplying a given semiclassical expansion by
an asymptotic series as defined by the last series in (11) with other constantsCk, k = 1, 2, . . . ,
one can obtain any other semiclassical expansion.

As we have mentioned above, the semiclassical series forχ is Borel summable forx
staying in the sectorSk whereχ is defined. In fact this summability takes place not only inside
a circleR(h̄−1)∗ = (2R)−1 of theh̄-plane demanded by the conditions of the Watson–Sokal–
Nevanlinna theorem [10] but rather in the circle|h̄| < h̄0 of the h̄-plane cut along the radius
| argh̄| = ±π .

Let us now make a crucial observation that a solution9k(x, h̄) constructed at the singular
pointx0 for a given functionf (x) 6= 0 and a solutioñ9k(x, h̄) constructed at the same point
x0 but corresponding to the choicef (x) ≡ 0 both satisfy the Schrödinger equation (3) with the
same potentialV (x) and therefore have to coincide with each other up to some multiplicative
h̄-dependent constantCk(h̄) (see appendix B for a proof of this statement), i.e.:

9k(x) = Ck(h̄)9̃k(x) k = 1, 2, . . . (14)

with Ck(h̄) given by

Ck(h̄) = exp

[
σh̄

∫ x0

xi

f (x)√
q(x) + h̄2δ(x) +

√
q(x) + h̄2δ(x) + h̄2f (x)

dx

]
(15)

where the coefficientCk(h̄) was calculated by taking a limitx → x0 on both the sides of (14).
It follows from (15) thatCk(h̄) is holomorphicat h̄ = 0 and because of that its Taylor

series at this point is trivially Borel summable.
The equality (14) proves therefore that the solution on its LHS can be obtained by

multiplying the solution on its RHS by the constantCk(h̄), then making the semiclassical
expansion of this product and next summing againá la Borel the resulting semiclassical series.

Our main conclusion, however, which follows from the discussion of the previous section
and from the last reasoning as well is that the generality of the constructions of fundamental
solutions containing an arbitrary functionf (x) is only apparent, i.e., the most ‘economical’
forms of these solutions and of the Stokes graphs corresponding to them are those obtained
for f (x) ≡ 0. Namely, the corresponding Stokes graphs are then composed from the minimal
number of Stokes lines and sectors.

Nevertheless, introducing the functionf (x) to the fundamental solutions is not completely
useless and it can help in some situations [11]. Some advantages which follows from using
thef -function depending on ¯h are also discussed in section 6.

5. Change of variable as Borel resummations

As he have mentioned earlier, the constructions (4)–(7) of the fundamental solutions were
originally performed by Fr̈oman and Fr̈oman using the change-of-variable procedure in the
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Schr̈odinger equation (3). Namely, puttingx = x(y) we keep the form of the Schrödinger
equation (3) unchanged if simultaneously we make a substitution:8(y) ≡ x ′− 1

2 (y)9(x(y)),
so thatQ(y) corresponding to8(y) in its Schr̈odinger-like equation is given by:

Q(y) = q(x(y))x ′2(y)− 1

2
h̄2

[
x ′′′(y)
x ′(y)

− 3

2

x ′′2(y)
x ′2(y)

]

= q(x) 1

y ′2(x)
+

1

2
h̄2

[
x ′′′(y)
x ′(y)

− 3

2

x ′′2(y)
x ′2(y)

]
1

y ′2(x)

∣∣∣∣
x=x(y)

(16)

wherey(x) is a function inverse tox(y). The expressions in the parentheses in (16) are called
the Schwarzians (ofx(y) and ofy(x), respectively).

It follows from (16) that to haveQ(y)meromorphic in they-plane we have to assume also
some analytic properties ofx(y). The meromorphicity ofx(y) would be enough for this goal
but it could limit excessively a range of allowedx(y) (see appendix D). Therefore we assume
the allowed family ofx(y) to depend onq(x) in a sense that the family is a collection of all
the complex functions ofy which provides us with bothq(x(y)) andx ′2(y) as meromorphic
functions ofy. It is then easy to check that this assumption is sufficient not only forQ(y)

to be a meromorphic function ofy but also for the Schwarzian ofy(x) to be a meromorphic
function ofx. (The last property of this Schwarzian is important when we come back both to
the initial variablex and the initial wavefunction9(x)).

Let us characterize a possible singularity structure of the inverse functiony(x) and its
derivative.

Sincex ′2(y) is meromorphic then the possible singularities ofy ′(x) (≡ 1/x ′(y)) at finite
pointsy0 = y(x0) are branch points of the type(x − x0)

−n/(n+2), n > 1, (wherex ′2(y) has an
nth order root). It is, however, easy to check that whenx0 coincides with some pole ofq(x)
then to keepq(x(y))meromorphic aty0 we have to assumen to be even. Therefore, it is rather
x ′(y) itself (than its square) which is then holomorphic aty0.

If x ′2(y) vanishes wheny escapes to infinity (in some direction on they-plane) so that
x(∞eiφ) = x0, wherex0 can be finite or infinite, we shallassume that y ′2(x) approaches
infinity according to the rules:y ′2(x) ∼ (x − x0)

−2α, for finite x0, or y ′2(x) ∼ xα for the
infinite one, with positiveα > 1

2 in the first case and withα > 0 in the second one. The last
assumptions are in accordance with the meromorphicity of the Schwarzian derivative ofy(x).
Of course, the last assumptions still limit somehow a family of the functionsx(y) which can
be used in the change-of-variable procedure.

Now, we can apply the procedure of the previous section to construct the fundamental
solutions for8(y) choosing, however, their most ‘economical’ form (i.e. puttingf (x) ≡ 0 in
(1)). Of course we need not do it in all, but only in those singular points ofQ(y) which are
images of the corresponding singularities ofq(x) since we want to come back to the original
wavefunctions9k(x).

Let us review therefore relevant possibilities.
If for some finite singularityx0 of q(x) (being neither its simple nor a double pole; see,

however, a further discussion) its imagey0 = y(x0) is finite then the corresponding singularity
ofQ(y) aty0 is again a pole of the same or higher order (depending on the lowest order of the
derivative ofx(y) which does not vanish aty0).

A simple pole ofq(x) with a finite image survives as a simple one forQ(y) if x ′2(y) does
not vanish at this pole. OtherwiseQ(y) gains a double pole at the corresponding point from
the Schwarzian ofx(y).

A double pole ofq(x) in the case considered always survives as a double one forQ(y)

no matter what the order of the root ofx ′2(y) at the corresponding point is.
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If the image of a finite singularityx0 of q(x) lies, however, at the infinity of they-plane
then it follows from our assumption thaty approaches the infinity as(x − x0)

−α+1, for α > 1
2,

or as log(x − x0). In the first case it can happen, however, that at the infinite image ofx0

Q(y) vanishes sufficiently quickly so that the corresponding action defined by it is finite at
the infinity. This takes place for example when the order of the pole ofq(x) atx0 is less than
2α. Therefore in such a case a corresponding fundamental solution cannot be defined at this
infinite point.

If x0 is an infinite singular point ofq(x) with its image being also infinite point of the
y-plane then, according to our assumption, the latter infinity is a singular point ofQ(y) if q(x)
diverges faster than some power ofx.

Taking all these into account we see that at each double and higher-order pole ofq(x) the
image of which survives as a singular point ofQ(y)we can construct the following fundamental
solution to the Schr̈odinger equation (3):

9̃k = (y ′2Q̃(y(x)))− 1
4 exp

[
σ

h̄

∫ x

xi

√
y ′2(ξ)Q̃(y(ξ)) dξ

]
χ̃k(y(x)) k = 1, 2, . . . (17)

whereχ̃k(y) is constructed according to (5)–(7) by making there substitutions:x→y(= y(x)),
δ(x)→ δ̃(y), q̃(x)→ Q̃(y), ω(x)→ ω̃(y),W(x)→ W̃ (y) andx0→y0(= y(x0)).
The corresponding̃δ(y)-term can be constructed only from those double poles ofQ(y) which
are finite images of the corresponding double poles ofq(x), as is assumed from now on.

The form of the solution (17) shows that the change of variable leads us again to some
fundamental solution i.e. it keeps the form (4) of these solutions.

Comparing the constructions (4)–(7) with (16) we can make the following identification:

δ(x) + f (x) = δ̃(y(x))y ′2(x)− 3

4

y ′′2(x)
y ′2(x)

+
1

2

y ′′′(x)
y ′(x)

. (18)

It follows from (18) that to have its RHS as a holomorphic function ofx we should have
to assume additionally the meromorphicity ofδ̃(y(x)) as a function ofx. This assumption
restricts still more the allowed family ofy(x). However, we shall see below that the limited
role of the change-of-variable procedure when applied to the fundamental solutions will allow
us to forget about thẽδ(y)-term in these cases, so that the assumptions made by us earlier
about the transformationsx(y) are still sufficient.

We show below that under the assumptions we have made in this section the LHS of (18)
is reconstructed by its RHS.

First, let us note that the Schwarzian term in (18) generates double poles in all the finite
points of thex-plane wherey ′(x) is singular. The coefficients at these double poles are
determined by the power indeces of these singularities. As a rule the values of these coeficients
are not equal to14. Note, however, that the double poles generated in this way can be ignored
if they do not coincide with the singularities ofq(x).

In the opposite case, however, when some of the double poles of the Schwarzian coincide
with some of the singularities ofq(x), we have to check whether they contribute to the
RHS according the rule described in section 2. Let us consider, therefore, the corresponding
possibilities listed earlier.

(1) x0 is a double pole ofq(x) andy0 = y(x0) is finite. Theny0 is also a double pole for
Q(y) and is therefore corrected by the Langer termδ̃(y). It is then easy to check that
this term (multiplied byy ′2(x)) together with the Schwarzian contributes exactly the term
(2(x − x0))

−2 to the RHS of (18);
(2) x0 is a double pole ofq(x) with the infinite image. Then this image is, of course, not

represented in the Langer term̃δ(y). This infinity is then a singular point ofQ(y) if y
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runs to it as log(x− x0). To the RHS of (18) contributes the Schwarzian only and one can
check that it is again the term(2(x − x0))

−2;
(3) x0 is a higher (than the second) order pole ofq(x) with the finite image. Then only the

Schwarzian contributes to the RHS of (18) with its appropriate second-order pole so that
the corresponding structure of the LHS at this pole is kept;

(4) x0 is a higher-order pole with the infinite image. ThenQ(y) vanishes at this image and the
corresponding action is finite—there is no a fundamental solution8(y) to be constructed
at this infinite point;

(5) x0 is an infinite singular point ofq(x) and is transformed byy(x) into an infinite singular
point ofQ(y). It is then easy to check that the Schwarzian does not contribute atx0 (it
vanishes) and the point remains a singular one at least forq(x). Therefore the singularity
structure of the LHS of (18) is maintained.

The possibilities (1)–(5) above exhaust all the relevant cases and prove in this way our
statement that the RHS of (18) has the same singularity structure as its LHS up to these
singularities ofq(x) which are transformed into regular points ofQ(y) and its actions.

It is worth noting here that, as follows from the case (2) above, a part of the Langer term
on the LHS of (18) is reconstructed by the Schwarzian on the RHS so that the equality (18)
cannot be split into two others, for the corresponding deltas and the rest.

Thus we have shown that choosingy(x)properly we can recover by the change-of-variable
procedure the general structure of the fundamental solutions described by (4)–(7).

Nevertheless, it seems to be obvious that the direct constructions of the Langer termδ(x)

as well as the corresponding functionf (x) (if necessary for some reasons) is much simpler
than looking for the correspondingy(x) by constructingx(y) (as a meromorphic function) and
trying to invert the latter.

Therefore a question arises about an advantage of making a change of variable in the
context of looking for the fundamental solutions. If we assume that we can putf (x) equal to
zero, then such an advantage can be connected with the possibility of constructing the Langer
term in a way different than the one relied on the Mittag–Leffler theorem.

Namely, we can try instead to construct ay = y(x) with the property to escape
logarithmically to infinity each time whenx approaches a position of some double pole of
q(x). For this goal we can puty = logz(x) and constructz(x) as a holomorphic function of
x having its unique simple roots at all the double poles ofq(x). The latter construction can be
performed using the Weierstrass product theorem [19]. Then the Schwarzian ofy(x) provides
us with the desired Langer term. By this construction, however, the appearance of the residual
f -function is in general unavoidable. But if we want to keep only the emerging Langerδ-term
we can of course discard the residualf -function. A simple example of such a construction is
given in appendix D.

Finally, needless to say, it follows that the fundamental solutions obtained with the help
of the change-of-variable procedure described above are Borel summable and, as follows from
section 4, can be obtained as the Borel resummation of the other ones multiplied by suitably
chosenh̄-dependent constants.

Of course, it seems to be obvious that it is not a good idea to get the effect of changing
variable in the latter way. Instead we can consider the above relation of the variable
transformation to the Borel resummation of the fundamental solutions, i.e. to the operation
which is intimately connected with the semiclassical expansions, as an explanation of why
it could improve many semiclassical approximations. The well known Langer substitution
in the case of the Coulomb potential serves here as the most famous example [1, 2]. Note,
however, that theexactness of the corresponding JWKB formula for the Coulomb case is
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not a direct consequence of this substitution but rather a result of a hidden symmetry of the
Coulomb potential displayed after another change of variable in the Schrödinger equation with
this potential [11].

6. Change of variable and exactness of JWKB quantization formulae

The above-mentioned correcting properties of a change of variable in the Schrödinger equation
can of course, be discussed equivalently in terms of thef -function introduced in section 2,
which is even more convenient. Let us raise the question of how far the semiclassical results
can be corrected by choosingf (x) properly. By these corrections we mean a decreasing
contribution to the semiclassical formulae of the third factor of the representation (4) of the
fundamental solutions in favour of the first two.

It follows from (4)–(7) and (14) modellingf (x) that we can change all the three factors.
The question is therefore whether it is possible to choosef (x) in such a way as to put the
correspondingχ -factors equal to 1 (the latter number being the limiting form of these factors)?

To answer the question consider equation (14), substituting there the corresponding forms
(3) of the wavefunctions̃9k(x) and9k(x). The discussion can be made more transparent by
using the following exponential representation forχ̃k(x, h̄) andχk(x, h̄) (the latter functions
correspond to the wavefunctions9̃k(x) and9k(x), respectively):

χ̃k(x, h̄) = exp

(∫ x

x0

ρ̃k(ξ, h̄) dξ

)
χk(x, h̄) = exp

(∫ x

x0

ρk(ξ, h̄) dξ

)
(19)

so that

ρ̃k(x, h̄) = χ̃ ′k(x, h̄)
χ̃k(x, h̄)

ρk(x, h̄) = χ ′k(x, h̄)
χk(x, h̄)

. (20)

Then the following relation comes out from the equality (14):

ρk(x, h̄) = ρ̃k(x, h̄) + σh̄
f (x)√

q̃(x, h̄2) +
√
q̃(x, h̄2) + +h̄2f (x)

− h̄
2

4

q̃(x, h̄2)

q̃(x, h̄2) + h̄2f (x)

(
f (x)

q̃(x, h̄2)

)′
. (21)

It follows from (20) that bothρ̃k(x, h̄) andρk(x, h̄) are Borel summable and from (21)
that their Borel transforms differ by a function holomorphic on the whole Borel plane (since
both the functionsf (x) andδ(x) areh̄-independent). Therefore it is clear that one cannot find
suchf (x)) to causeρk(x, h̄) to disappear, i.e., one cannot be left in9k(x) with its first two
JWKB factors only. This is becausẽρk(x, h̄) is singular ath̄ = 0.

However, makingf (x) alsoh̄-dependent but choosing it holomorphic at ¯h = 0 we can
achieve a result when the firstn terms of the semiclassical expansion ofρk(x, h̄) vanish.
The latter is possible globally (i.e. independently ofk) since the semiclassical expansions of
ρk(x, h̄) arek-independent (i.e. these expansions do not contain any integration on thex-plane,
see for example [16]). One of our earlier paper is a good illustration of this possibility [6] (see
also a comment below).

To achieve the goal of vanishingρk(x, h̄)we would have to usef (x, h̄)as singular at ¯h = 0
and therefore expected to satisfy all the necessary conditions of the Watson–Sokal–Nevanlinna
theorem to be Borel summable. In such a case,f (x, h̄) becomes, similarly toρk(x, h̄), sector
dependent i.e. within the class of the Borel summable functions there is no possibilty to define
a global y(x, h̄) which could provide us with9k(x, h̄) deprived of itsχk-factor for all k
simultaneously. In a more obvious way one can conclude this from (20) putting thereρk(x, h̄)
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equal to zero and then treating the equation obtained in this way as the differential one for
f (x, h̄) whereρ̃k(x, h̄) is assumed to be given. However, for any two differentk there are two
differentρ̃k(x, h̄) and in consequence two different solutions forf (x, h̄) have to emerge.

Needless to say, the above negative result for the existence of the corresponding function
f (x, h̄) is also negative for the respectivey(x, h̄) which can be obtained as a solution to
equation (18) and which changes the variable in the Schrödinger equation (3).

Because of (14), the last result can also be expressed in terms of the ¯h-dependent constants
present in this relation. Namely, it follows from the above discussion that there is no choice
of the constantsCk which could cause all the correspondingχk to be reduced to unity if all the
constants as given by (15) are to be defined only by one globalf (x, h̄) (or, alternatively, by
somey(x, h̄) realizing the underlying change of thex-variable).

Nevertheless, it is always possible to make such a global choice off (x, h̄) (or equivalently
y(x, h̄) or the constantsCk) to produce simultaneously all the fundamental solutions for which
the series in (5) start with an arbitrary high power of ¯h. Of course, this is the case off (x, h̄)
holomorphic ath̄ = 0. Such a choice corresponds to a total effect of repeating changes of
variable when for each subsequent Schrödinger-like equation a new independent variable is the
action i.e.y ′2(x) = q(x). The ‘lacking’ powers of ¯h are collected then in(y ′2(x, h̄)Q̃(x, h̄))−

1
4

and in the corresponding exponential factors of the solutions (4). These two factors are then
the sources of new JWKB approximations generalizing the conventional ones [6].

The impossibility to reduce the form (4) of the fundamental solutions to their first two
factors by choosing properly somef (x, h̄) (the same for all the solutions) has an immediate
consequence for obtaining the exact JWKB formulae for quantization of energy levels. Namely,
quantizing the levels in a potential well it is impossible, in general, to get the quantization
formula in the pure JWKB form:

exp

[
σ

h̄

∮
K

√
q(x) + h̄2δ(x) + h̄2f (x, h̄) dx

]
= −1 (22)

by choosingf (x, h̄) properly. The cases where this is possible are rare and are related rather
to some particular symmetries of potentials considered [11].

To show this let us quantize a 1D quantum system with the help of the fundamental
solutions (it has been described in many of our earlier papers [1, 13, 14, 16]). Such a system
can be defined by describing positions and orders of poles and roots ofq̃(x, h̄2) but instead of
taking some particular example of the latter we prefer to defineq̃(x, h̄2) by such a description
stressing in this way its arbitrariness as well as the potential generality of arguments.

For simplicity we shall assume, however, that after a change of variable the effective
potential which emerges has only one absolute minimum so that we can choose the quantized
energy level to lie in the well with this minimum and below the rest. Then, there are only
two real turning pointsx1, x2 of q̃(x, h̄2) whilst the rest of them are complex and conjugated
pairwise (we assumẽq(x, h̄2) andE to be real). We assume also that the problem has been
limited to a segmentz1 6 x 6 z2 at the ends of which̃q(x, h̄2) has poles. But if we wish we
can push any ofz1,2 (or both of them) to∓∞ respectively.

To write the corresponding quantization condition for energyE and to handle
simultaneously the cases of second- and higher-order poles we assumez1 to be the second-order
pole andz2 to be the higher ones.

It is also necessary to fix to some extent the closest enviroment of the real axis of the
x-plane to draw a piece of SG sufficient to write the quantization condition. To this end we
assumex3 andx̄3 as well asx4 andx̄4 to be another four turning points andz3 andz̄3 another two
second-order poles of̃q(x, h̄2) closest to the real axis. We assume also a possible divergence
at infinity. Then a relevant part of the Stokes graph can look as in figure 1.
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Figure 1. The SG corresponding to general quantization rule (23).

There is no unique way of writing the quantization condition corresponding to the figure.
Some possible three forms of this condition can be written as [8]:

exp

[
σ

h̄

∮
K

√
q(x)′ + h̄2δ(x) + h̄2f (x, h̄) dx

]
= − χ̃1→3(h̄)χ̃2→3̄(h̄)

χ̃1→3̄(h̄)χ̃2→3(h̄)
= − χ̃1→4(h̄)χ̃2→3̄(h̄)

χ̃1→3̄(h̄)χ̃2→4(h̄)

(23)

whereχ̃k→j (h̄), k, j = 1, 2, 3, 4 are calculated forx → zj with the help of formula (5), i.e.
χ̃k→j (h̄) = limx→zj χ̃k(h̄) along a canonical path. The closed integration pathK is shown in
figure 1. In the figure the pathsγ1→3, γ2→3, etc are the integration paths in formula (5)
between the singular pointsz1 and z3, z2 and z3, etc respectively, whilst the wavy lines
designate corresponding cuts of thex-Riemann surface on which all the fundamental solutions
are defined.

The condition (21) isexact. Its LHS has just the JWKB form. If we substitute each
χ̃k→j (h̄) in (23) by unity (which these coefficients approach when ¯h→ 0) we obtain the well
known JWKB quantization rule (22) which, in general, is only an approximation to (23).

Now, since there is no such aglobal f (x, h̄) (alternatively, anx-variable transformation
y(x, h̄)) by which all χ̃k→j (h̄) in (23) could become simultaneously equal to unity the RHS
of (23) cannot be reduced to unity by any suchf (x, h̄) i.e. the JWKB formula provided in
this way by (23) is always only an approximation. As we have mentioned, some additional
symmetry conditions have to be satisfied by the initialq(x) to provide us with such an exact
JWKB formula [11].

7. Conclusions

In this paper we have shown that the Borel summable fundamental solutions to Schrödinger
equation with the meromorphic potentials can be modified by an almost arbitrary meromorphic
function and that this modification is equivalent to the appropriate Borel resummations of the
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unmodified solutions multiplied by properly chosen ¯h-dependent constants. We have also
shown that such modifications are always equivalent to performing some change of variable
in the corresponding Schrödinger equation (3) when the derivative of the substituted variable
depends meromorphicaly on the new one.

We have also argued that the advantages of variable transformations when applied to the
fundamental solutions are rather limited and seem to provide us in the best case with the proper
form of the Langer terms.

The relation of the effect of a variable transformation in the fundamental solutions to
suitable Borel resummations of these solutions multiplied earlier by respective ¯h-dependent
constants explains a little about the mysterious improvement of the JWKB formulae obtained
as a result of such a change of variable.

On the other hand, we have also provided arguments that no such change of variable can
reduce an exact quantization formula to its pure JWKB form. The latter case can happen only
due to particular symmetry properties of quantized potentials [11,21].
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Appendix A

The Maslov method is formulated for an arbitrary linear partial differential equation (LPDE)
having as its semiclassical partner a dynamical system with a finite number of degrees of
freedom [13]. Maslov’s semiclassical theory of solutions to the corresponding LPDE is
developed on the ‘classical’ objects known in the classical mechanics as Lagrangian manifolds
[13,14]. Limited to the one-degree-of-freedom case and to the 1D Schrödinger equation, the
Lagrangian manifolds are nothing but the 1D classical trajectories in the corresponding 2D
phase space. Exact solutions to the stationary Schrödinger equation having particular Dirac
forms (4) can be naturally redefined to live on the Lagrangian manifold corresponding to a
given energy. However, to cover by such a description the whole coordinate domain which
the corresponding wavefunctions are defined on, the imaginary time evolution of the classical
equations of motion has also to be switched on to take into account so-called ‘classically
forbidden regions’. The emerging Lagrangian manifold then contains branches corresponding
to the real time motions (performed in classically allowed regions) as well as to the imaginary
ones with the imaginary part of the momentum in the latter case playing the role of the classical
momentum. Of course, the semiclassical conditions for the considered global wavefunction
are the following: it has to vanish exponentially when ¯h → 0 in the classically forbidden
regions and to oscillate in the classically allowed ones.

Unfortunately, the Dirac representation of these solutions considered as functions of the
coordinate cannot be defined globally on the above Lagrangian manifold, being singular at
points where the manifold branches making a matching procedure of the solutions defined
on different branches impossible. These singular points are, in general, called the caustic
ones but in the 1D case they are known as turning points. Maslov and Fedoriuk’s remedy
to solve this arising ‘connection problem’ is to change the coordinate variable around such
points into the corresponding momentum, i.e., to change the coordinate representation of the
wavefunction into the momentum one preserving the Dirac form of the solution. Assuming the
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wavefunction to be normalized, its latter representation can be given formally by the Fourier
transformation of the former. In the new representation the wavefunction is then regular at
the coordinate turning points of Lagrangian manifold (being on the other hand singular at the
emerging momentum turning points). The inverse Fourier transformation considered close to
a coordinate turning point provides us again with the solution in the coordinate representation
given on both the sides of the chosen coordinate turning point. As we have mentioned above,
the semiclassical limit condition for the latter solution is of course to vanish exponentially
(whenh̄ → 0) on one side of the turning point and to oscillate on the other. This condition
determines the way the local solutions determined on both the sides of each turning point and
having the Dirac form are to be matched.

The above idea of matching the solutions on different branches of the Lagrangian manifold
does not seem to be effective for the exact solutions to Schrödinger equation but it becomes
so when the solutions in their Dirac forms are substituted by their corresponding semiclassical
series. This is, in fact, the subject of the original approach of Maslov and collaborators.
Namely, in such a case the classically forbidden parts of the solutions disappeared completely
(being exponentially small) and the remaining ones are then given uniquely on the classically
allowed branches of the Lagrangian manifold. The matching procedure then connects only
two oscillating solutions separated by the corresponding turning point. The underlying Fourier
transformation then becomes effectively a point transformation determining the connection.
As is well known [13], such a semiclassical wavefunction continued through a turning point
changes its phase by±1. (These changes are controlled in general by so-called Maslov
indices). Synthetically the whole operation is performed with the help of the Maslov canonical
operator [13].

It is easy to note, however, that the necessity to use Fourier transformation disappears if it
is possible to somehow avoid turning (caustic) points on the way the wavefunction is continued
on. This can be achieved, for example, by enlarging the number of dimensions the problem is
formulated in. The complexification of the problem is one of such ways to be used [15]. In the
1D case this can be done effectively and without appealing directly to the semiclassical series
expansions by defining the problem on the complex coordinate plane and utilizing the notions of
Stokes graphs and fundamental solutions. In comparison with Maslov’s approach, the complex
coordinate plane (in fact the latter is rather a Riemann surface) corresponds to the complex
Lagrangian manifold endowed with the coordinate charts collected of all canonical domains
defined by the corresponding Stokes graph. To each canonical domain a fundamental solution
is attached having the corresponding domain as the maximal one where its semiclassical
expansion as given by (11) is valid. There is no necessity to construct and use the Maslov
canonical operator to continue (analytically) the fundamental solutions and to match them in
any domain of the plane. The Maslov indices gained by the fundamental solutions on the way
of their analytical continuations are provided by crossed cuts of the corresponding Riemann
surface. Therefore using the fundamental solution method in the 1D problems is completely
equivalent to the corresponding Maslov one in the semiclassical regime of the problem but it
has many obvious advantages over the latter with their use as the exact solutions to Schrödinger
equation being the first one. Other important properties of the method have been mentioned
and used in the main body of this as well as other papers [6–9,11].

Appendix B

We shall show here that the form (4) of the fundamental solutions as defined by (5)–(7) is
independent of the change of variable procedure in the Schrödinger equation. The last method
was applied originally by Fr̈oman and Fr̈oman [3].
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To this end let us substitute the Dirac form (4) of the solution to the Schrödinger
equation (3). Using the notations of section 2 we get the following equation for theχ -factor
of (4):

(q̃−
1
2 (x)χ ′(x))′ +

2σ

h̄
χ ′(x) + ω(x)χ(x) = 0 (B.1)

where we have dropped for a while the sector indexk as irrelevant for the present discussion.
Multiplying now (B.1) by exp( 2σ

h̄

∫ x
xi
q̃

1
2 (ξ) dξ) we get:

(q̃−
1
2 (x)χ ′(x)e

2σ
h̄

∫ x
xi
q̃

1
2 (ξ) dξ

)′ = −ω(x)χ(x)e2σ
h̄

∫ x
xi
q̃

1
2 (ξ) dξ

. (B.2)

Taking now someregular pointy0 of q̃(x, h̄2)and assuming forχ(x) the ‘initial’ condition
χ(y0) = χ0 andχ ′(y0) = χ ′0 we can transform (B.2) into the following integral equation:

χ(x) = χ0 +
σh̄

2
q̃
− 1

2
0 χ ′0(1− e

−2σ
h̄

∫ x
y0
q̃

1
2 (ξ) dξ

)− σh̄
2

∫ x

y0

(1− e
−2σ
h̄

∫ x
y0
q̃

1
2 (η) dη

)ω(ξ)χ(ξ) dξ

(B.3)

with q̃(y0, h̄
2) = q̃0.

The last equation is general, i.e., the choices of the functionsδ(x) andf (x) as well as
of the regular point y0 are arbitrary. The equation can be easily iterated leading us to the
functional series forχ(x) which is convergent uniformly forR(σ

∫ x
y0
q̃

1
2 ) dξ > 0 when the

condition (8) for the integration path is satisfied. We can get in this way at eachregular point
y0 of q̃(x, h̄2) and for a given (but arbitrary)σ = ±1 two independent solutions having the
Dirac form (4).

To get, however, the fundamental solutions from (B.3) we have to choose instead of the
pointy0 a singular pointx0 defining some sectork and and to assumex to lie in this sector as
well as we to choose the functionsδ(x) andf (x) according to their constructions in section 2.
Then sincex0 is now singular for the actions (7) the exponential function in the second term of
the RHS in (B.3) vanishes by this choice whilst the integral remains finite by the constructions
of both the Langer term and the functionf (x). The consistency condition needs then also to
putχ ′0 to zero in this case. Putting yetχ0 = 1 we get the formula (5) by the infinite iteration
of (B.3) prepared in this way.

A crucial point for the results of section 3 is to note that at a given sector one can define
only one fundamental solution at the singular pointx0 of this sector i.e. any two solutions
constructed in section 3, vanishing forx approachingx0 inside the sector and differing by
the choice of theirf -functions have to coincide with themselves up to some multiplicative
constant.

The last conclusion follows easily from the existence, as was mentioned above, of two
independent solutions of the Dirac form (4) for anyregular point y0. We can take as these
solutions the ones constructed forf (x) ≡ 0 and satisfying the following two pairs of the
‘initial’ conditions: χ(y0) = 1, χ ′(y0) = 0 andχ(y0) = 0, χ ′(y0) = 2σ

h̄
q̄(y0) = 2σ

h̄
q̄0 where

q̄(x) = q(x) + h̄2δ(x). Then the two independent solutionsφ1 andφ2 to the Schr̈odinger
equation (3) corresponding to the last conditions satisfy the following ‘initial’ conditions:

φ1(y0) = q̄−
1
4

0 exp

(
σ

h̄

∫ y0

xi

q̄
1
2 (ξ) dξ

)
φ′1(y0) = −1

4
q̄
− 5

4
0 q̄ ′0 exp

(
σ

h̄

∫ y0

xi

q̄
1
2 (ξ) dξ

)
+
σ

h̄
q̄

1
4
0 exp

(
σ

h̄

∫ y0

xi

q̄
1
2 (ξ) dξ

)
φ2(y0) = 0 φ′2(y0) = 2σ

h̄
q̄

1
4
0 exp

(
σ

h̄

∫ y0

xi

q̄
1
2 (ξ) dξ

) (B.4)
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respectively.
Then a fundamental solution9k(x) corresponding to the choice of somef (x) 6= 0 is a

linear combination ofφ1 andφ2 given by:

9k(x) = C1φ1 +C2φ2 (B.5)

whereC1 andC2 satisfy the equations:

C1(h̄) =
(

1 + h̄2f (y0)

q̄(y0)

)− 1
4

exp

[
σh̄

∫ y0

xi

f (x)√
q̄(x) +

√
q̃(x)

dx

]
χk(y0)[(

−1

4
q̃
− 5

4
0 q̃ ′0 +

σ

h̄
q̃

1
4
0

)
χk(y0) + q̃

− 1
4

0 χ ′k(y0)

]
exp

[
σh̄

∫ y0

xi

f (x)√
q̄(x) +

√
q̃(x)

dx

]
=
(
−1

4
q̄
− 5

4
0 q̄ ′0 +

σ

h̄
q̄

1
4
0

)
C1 +

2σ

h̄
q̄

1
4
0 C2.

(B.6)

It follows now from the last equations that wheny0 approaches the singular pointx0 then
C1 approaches the value given by (15) whilstC2 vanishes. On the other hand it is easy to check
that both theχ -factors coresponding toφ1 andφ2 have the same limit wheny0→ x0 (they are
the solutions to the same integral equation (B.3) which comes out wheny0→ x0). This limit
is given by (5).

Appendix C

We shall show here that the property of the fundamental solutions to be Borel summable in their
sectors established earlier for the polynomial potentials [8] is valid for the meromorphic ones
as well. For simplicity, we shall demonstrate it for some simple but representative potentials
since the basic method of the proof can be also applied to a general meromorphic potential.

The potentials we are going to consider are the following:

V1(x) = −α
x

+
β

x2

V2(x) = −α
x

+
β

x2
+
γ

x3

V3(x) = −α
x

+
β

x4

α, β, γ > 0.

(C.1)

Choosing the above signs ofα, β, γ we want to create a possibility for the bound states to
exist, considering this as a rather typical situation for the kind of problems being investigated.

Let us consider first the potentialV2(x). Conclusions which follow from this case shall
be shown by considering the fourth-order pole to be independent of the pole order. The only
exception is the case of the double pole which has to be considered separately.

The potentialV2(x) is shown in Figure 2(a). Assuming the ‘ecomomic’q(x)(= V2(x)−E)
corresponding to it with its negative energyE lying, however, above the right local minimum
of V2(x) we get the corresponding Stokes graph on thex-plane shown in figure 2(b).

It is now convenient to make the Langer substitutionx = ey to move the singularity of
V2(x) atx = 0 to the left infinity of they-plane and to consider an equivalent problem on the
latter plane with the newQ(y, h̄2) given, according to (16), by:

Q(y) = −αey + γe−y − Ee2y + β +
h̄2

4
(C.2)

and with the corresponding Stokes graph shown in figure 3.
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Figure 2. The potentialV2(x) (a), and the corresponding Stokes graph (b).

The fundamental solutions (as well as all other solutions) corresponding to the potential
V2(x) are defined on an infinitely sheeted Riemann surface branching atx = 0. The Stokes
graph of figure 2(b) corresponds to one of the sheets cut along the real negative half-axis. On
the remaining sheets, however, the Stokes graph looks the same.

There are four sectors on each sheet (A−1,A0,A1 andB0 on the sheet of figure 2(b)). The
two of them (A−1 andA1) touching the corresponding cut continue (in opposite directions) to
the neighbouring two sheets.

Therefore there are infinitely many sectors of the above two types (A andB) on the
considered Riemann surface. Under the Langer transformationy = logx this Riemann surface
unfolds into the singley-plane with the images of the sectors of the sheet of figure 2(b) shown
in figure 3 (the corresponding sectors being denoted by the same characters). The sectors of
the remaining sheets are distributed periodically on they-plane.

It is obvious that the fundamental solutions constructed on they-plane according to the
Stokes graph of figure 3 are in one-to-one correspondence with the respective fundamental
solutions on thex-Riemann surface (the latter can be obtained from the former by formula (17))
and this correspondence coincides with the one between the sectors. Thus in this way the
fundamental solutions corresponding to all the sectors of the typeB0 of figure 2(b) correspond
to the fundamental solutions defined in all the sectors lying in the left half of they-plane whilst
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Figure 3. The Stokes graph corresponding toq2(x) = V (x)− E after the subtitutionx = ey .

the remaining fundamental solutions of thex-Riemann surface (of the typeA−1, A0 andA1)
are defined in the sectors of they-plane lying in the right half of the plane.

It follows further from (17) that the Borel summability of the fundamental solution defined
on thex-Riemann surface is equivalent to the corresponding summability of the fundamental
solutions defined on they-plane. The Borel summability of the latter solutions follows,
however, directly from the Stokes graph of figure 3.

To show this, let us first note that all the sectors as well as the fundamental solutions defined
on thex-Riemann surface were unified by the Langer transformation i.e. on they-plane their
properties are similar. In particular they behave similarly under the rotation in the ¯h-plane
around the point ¯h = 0. Namely, the asymptotes of the Stokes lines running to the left (right)
infinity of the y-plane move down (up) by 2φ (φ) when argh̄þ increases byφ whilst all the
Stokes lines rotate in vicinities of turning poinst around these points by the angle 2φ/3. All
these motions have opposite directions when arg ¯h decreases byφ.

It is now easy to realize that forφ = π (with y kept fixed) the sectors as well as the
fundamental solutions corresponding to them transform into themselves according to the rules:
. . . → A−n → A−n+1 → . . . → A−1 → A0 → A1 → . . . → An−1 → An → . . . and
. . .→ B−n→ B−n+1→ . . .→ B−1→ B0→ B1→ . . .→ Bn−1→ Bn→ . . .. The arrows
in the last transformations are to be reversed ifφ = −π .

However, this is exactly the situation met in the polynomial potential case [8] and
therefore all the conclusions and constructions done for this case in the quoted paper (i.e.
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Figure 4. The Stokes graph corresponding toV3(x) in thex-plane (a), and in they-plane after
transformationx = ey (b).

the holomorphicity of each fundamental solution with respect to ¯h in a sectorH = {h̄ : |h̄| <
h̄0, |φ| < π}, the calculation of its jump on the cutC = {h̄ : |h̄| < h̄0, |φ| = π} and the
applying of the Bender–Wu formula to calculate the (factorial) rate of grow of coefficients of
its semiclassical expansion) are valid here as well.

Therefore, our main conclusion for the case considered is that all their fundamental
solutions when expanded semiclassically in the sectors defining them are recovered by the
Borel resummations.

Consider now the potentialV3(x) and q(x) = V3(x) − E, with 0 > E > V3,min

and make the Langer change of variablex = ey to get the resultingQ(y) asQ(y) =
−αe−y + βe−y − Ee2y + h̄2

4 . The Stokes graphs corresponding to bothq(x) andQ(y) are
then shown in figure 4. It follows from the figure that the arguments applied previously to
the second of the potentials (C.1) are obviously still valid in the considered case and we can
again claim that the semiclassical expansions of the fundamental solutions corresponding to
the sectorsAn andBn, −∞ < n < +∞, on both the figures 4a and 4b (the sectors on the
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figures denoted identically map into each other by the Langer transformx = ey) are Borel
summable to the solutions themselves.

The case of the double pole potential is exceptional since as it is seen on figures 5(a)
and (b) showing the Stokes graphs corresponding toq(x) = −αx−1 + βx−2 − E and
Q(y) = −αe−y−Ee2y +β + h̄2

4 (0> E > V1,min), respectively, there is onlyonefundamental
solution of theB-type (defined at the double pole) and infinitely many fundamental solutions
of theA-type. The semiclassical expansions of the latter are obviously Borel summable (to the
solutions themselves) whilst the Borel summability of the uniqueB-type solution is unclear
at first sight.

Namely, looking at figure 5(c) which represents the Stokes graph of figure 5(b) rotated
by argh̄ = ±π/2 we see that there are two fundamental solutions which can be defined in
the half plane lying to the left from the vertical (anti-Stokes) line joining the turning pointy1

with all its periodic displacements. One of these solutions is constructed along the vertical
canonical pathγu(y) emerging from the ‘upper’ infinity of they-plane (see figure 5(c)) and
running downwards to the pointy on the figure, whilst the second solution is defined on the
analogous pathγd(y) running upwards. These solutions, by their construction, have well-
defined semiclassical expansions (11) and are limiting solutions of the one defined by the
canonical pathγ (y) in the sectorB of Stokes graph of figure 5(b) when the latter graph is
rotated by arg ¯h = ±π/2.

Therefore we can conclude that the Nevanlinna–Watson–Sokal theorem for the unique
fundamental solution of sectorB are satisfied with respect to the desired domain of
holomorphicity (coinciding with the sectorH1 = {h̄ : |h̄| < h̄0,−π

2 6 argh̄ 6 π
2 }) and to the

desired semiclassical expansion whilst the desired factorial rate of growth of the coefficients
of its semiclassical expansion is still not established. Namely, because of the infinite series of
the turning points displaced vertically, we cannot rotate the fundamental solution of sectorB

beyond sectorH1 without destroying simultaneously the analyticity of its representation (4).
Therefore the method of Bender and Wu cannot be applied in this case.
However, we can use the results obtained for the case of the potentialV2(x) to argue that the

discussed semiclassical coefficients have the desired factorial growth. Namely, we can note that
the fundamental solution90 attached to the sectorB0 of figure 3, as well as the coefficients
of its semiclassical expansion, approach the solution9 of sectorB of figure 5(b) and its
semiclassical coefficients, respectively, when the positive coefficientγ in the potentialV2(x)

vanishes. These limits are not uniform inγ , however. Nevertheless, since the semiclassical
coefficients of90 are known to grow factorially, the same property has to have its limit for
γ → 0+. In this way the third demand of the Nevanlinna–Watson–Sokal is satisfied also in
this case, proving the Borel summability ofall the fundamental solutions of the considered
case.

An extension of the arguments used in the above discussion to a general meromorphic
potential seems to be straightforward (by applying to a chosen particular pole the Langer
transform which maps the pole to the (left) infinity of they-plane) although the unavoidable
proliferation of poles and turning points in they-plane can make the corresponding analysis
laborious.

Appendix D

We consider here a simple example of the meromorphic potentialV (x) = sin−2 x to illustrate
the action of the change-of-variable procedure in its form described at the end of section 5. A
z-function generating a corresponding functiony(x) can be easily guessed to bez(x) = sinx
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Figure 5. The Stokes graph corresponding toV1(x): (a) in thex-plane, (b) in they-plane and (c)
in they-plane rotated by arg ¯h = ±π/2.
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and thereforey(x) = log sinx. Then a modification ofq(x) = V (x) − E to q̃(x, h̄2) by the
Schwarzian ofy(x) gives:

q̃(x, h̄2) = 1

sin2 x
+
h̄2

4

1

sin2 x
− 3h̄2

4

1

cos2 x
. (D.1)

One can easily recognize in (D.1) the assumed functional and meromorphic structure
of (1). The forms ofx ′2(y) = e2y/(1− e2y) and ofq(x(y)) = e−2y − E also satisfy the
corresponding assumptions about the transformationx(y) done in section 5.

We can of course now discard thef -term in (D.1) (equal to−3/(4 cos2 x)) to obtain the
resultingq̃(x, h̄2) in the form of Bailey [20].
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