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Abstract. The 1D Schadinger equation with meromorphic potentials are considered. It is
shown that any fundamental solution constructed for such potentials has a property to depend
in some particular way on an arbitrary meromorphic functjor). A family of fundamental
solutions created in this way can be reproduced by multiplying some fixed member of the family by
appropriatéi-dependent constants. This freedom allows for a proper construction of fundamental
solutions at simple and double poles of considered potentials. It expresses the fact that any change
of variablex — y = y(x) keeping the form of 1D Scbdinger equation keeps invariant the form of

the fundamental solutions as well. In fact there is one-to-one correspondence between the functions
f(x) and the Schwarzian af(x). Since any fundamental solution is Borel summable it means also
that the effect of the change of variable in fundamental solutions can be recoverd by multiplying
the ‘initial’ fundamental solutions by suitably chosedependent constants and Borel resumming

the corresponding semiclassical expansions. This explains why a change of variable can improve
JWKB formulae. However, it is shown also that a change of variable itself cannot provide us with
the exact JWKB formulae.

1. Introduction

A change of variable in the 1D Sdbdinger equation is one of the basic techniques used
to solve 1D problems (see [12], for example). In the context of semiclassical (JWKB)
approximation the procedure is in fact a main ingredient d0ffan and Fsman'’s approach to

the 1D Schadinger equation [3, 4] with the aim of getting improved JWKB quantization
formulae [4-6]. Sometimes, a suitable change of variable provides us with JWKB-like
formulae solving the problem of energy spectra even exactly [4]. No doubts, however, that
the latter possibility depends totally on a potential considered and a changing variable plays
in such cases only an auxiliary role [11].

A change of variables is also an essential ingredient of a more general approach to the
semiclassical approximations formulated by Maslov and his collaborators [13]. In the context
of the latter approach the change-of-variable procedure is an inherent part of the continuation
procedure of semiclassical series defined originally in some domain of the configuration space
to another domain of the space. The relevant variable transformations used in the Maslov
method are the canonical ones (in the sense of classical mechanics).

To establish clearly the relations as well as differences between the Maslov approach and
the consideration performed in this paper, the former is discussed in some detail in appendix A.
It is argued there that using fundamental solutions as we do in our paper is equivalent to the
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method of Masloet alin the semiclassical regime of the considered 1D problems but has many
advantages over the Maslov procedure in the remainder of our investigations. In particular,
the problem of Borel resummation central for our paper cannot be put and considered properly
ignoring the existence of the fundamental solutions and their properties. After all, the method
of Maslovet alis purely asymptotic from the very begining and any problem of resummation
of the semiclassical series used in the method has not been considered as yet.

In particular, from the discussion of appendix A it follows clearly that the change-of-
variable procedure considered in our paper does not have much to do with the canonical
transformations used as a change of variable in the Maslov asymptotic method. The latter are
the global Fourier transformations of wavefunctions whilst the former are the local point ones.

An improvement of the standard JWKB formulae achieved by the changing variable
procedure appears as corrections typically having the form of an additiedegbendent term
in emerging effective potentials [1, 2,4-6]. Since in all these cases of changing variable the
standard JWKB formulae can be easily restored simply-bypansions of the improved ones,
the latter seems to be some kind of hidden resummation of a partial (in the case of improvements
only) or a full (when exact formulae emerge) standard semiclassical expansion corresponding
to considered cases.

It is the aim of this paper to show that indeed this hidden resummation mentioned
above really takes place whenever the change-of-variable procedure is applied to so-called
fundamental solutions to the 1D Sékiinger equation [8,9] and that the effect of such a change
of variable is equivalent to the Borel resummation of standard semiclassical expansions of the
fundamental solutions multiplied by appropriately chosetependent constants.

A discussion of the fundamental solutions in the above context is essential since these
solutions are the only ones with the property of being Borel summable [7]. Despite their
rareness, the fundamental solutions when collected into a full set allow us to solve any 1D
problem [8, 9] (see also a discussion below).

Because of the way in which a change of variable affects the fundamental solutions, a class
of potentials which seems to be most natural for the corresponding discussing is the class of
meromorphic potentials. This choice also enforces a suitable limitation of a class of variable
transformations.

This paper is organized as follows. In the next section the fundamental solutions and their
use are recalled. It is shown that there is a functional freedom in defining the solutions not
affecting their Dirac form. In section 3 the analytic properties of the fundamental solutions
and their dependence on the functional freedom mentioned above are discussed. In section 4
the standard semiclassical expansions of fundamental solutions and their properties, including
their Borel summability, are reconsidered. It is shown that the functional freedom of the
fundamental solutions is a freedom of multiplying them by suitably chdsdependent
constants holomorphic & = 0 and next restoring this functional freedom by the Borel
resummation. In sectivS a class of variable transformations is discussed. It is shown that the
net result of these transformations is to reproduce the functional freedom of the fundamental
solutions discussed in the previous section. The Borel resummation aspects of a change-of-
variable operation is also examined in this section. In section 6 the impossibility of achieving
the exact JWKB formulae by a change-of-variable operation itself is shown. We conclude with
section 7.

2. Stokes graphs and solutions they define

A standard way to introduce the fundamental solutions is a construction of a Stokes graph [7-9]
for a given meromorphic potenti&l(x) (the latter is assumed to be independent of the Planck
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constant). Such a construction, according t@Rran and Féman [3] and Fedoriuk [17], can
be performed in the following way.

Let Z denote a set of all the points of theplane at whichV (x) has its single and double
poles. Letf (x) be some other meromorphic functionxofith none of its double pole being
contained inZ. Letd(x) be a meromorphic function, the unique singularities of which are
double poles at the points collected Eywith the coefficients at all the poles equal 30
each. The latter function can be constructed in general with the help of the Mittag—Leffler
theorem [18]. But in the case of a finite number of points contained, ifi(x) is simply a
finite sum of double poles (with the coefficients equa% teach) over all the points &f.

Consider now a function

GO, 7% = V(x) +R?f(x) +h%8(x) — E (1)

with E as the energy parameter which is assumed to be real.

It follows from the above assumptions that among all singularitiég0f72) the simple
poles can be provided bg(x) only.

The presence and role of thgerm in (1) are explained below. This term contributes to
(1) if and only when the corresponding potentiglx) contains simple or second-order poles.
(Otherwise the corresponditdgterm is put to zero). We shall call it the Langer term.

The Stokes graph corresponding to the funcdn, #%) consists now of Stokes lines
emerging from roots (turning points) or simple polesjf, 7%). The points of the Stokes
lines satisfy one of the following equations:

R[x,/C}(x,Ez)dyzo (2

with x; being a root or a simple pole §fx, 72).

The Stokes lines which are not closed end at these points ofptene (i.e. have the latter
points as the boundaries) for which an action integral in (2) becomes infinite. Of course such
points are singular fof (x, #%) and can be its finite poles or its poles lying at infinity.

Each such singularity, of G (x, #?) defines a domain called a sector. This is the connected
domain of thec-plane bounded by the Stokes lines agdtself, with the latter point also being
a boundary for the Stokes lines or being an isolated boundary point of the sector (as it is in the
case of the second-order pole).

In each sector the LHS in (2) is only positive or negative.

Consider now the Schdinger equation:

W (x) —h2q(x)¥(x) =0 ®)

whereg(x) = V(x) — E (we have put the mass in (3) to be equal tc%).

Let us assume that a singularityof G (x, #?) does not coincide with any of a second-order
pole of f(x). Then, following Fbman and Fiman (see also appendix B), one can define in
each secto§; having a singular pointg at its boundary a solution of the form:

U) =g e Wonw k=12 4)
where:
o \' [* & bt
xe(x) =1 +Z (—7) f délf d$z~--/ dé, w(EDw(&2) ... w(En)
n>1 X0 X0 X0

X (1— e FTWO-WED) (1 g FWE-WE)y . (1 _ g FWE-D-WED)

®)
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with
_ WA S 1§« 5 §Px R
G:(c, B 4G RY) 1655 (x,h?)

W(x) = / V(& h?) dg (7

wherex; is a root ofg (x, #?) lying at the boundary of;.
In (4) and (5) a sigw (= £1) and an integration path are chosen in such a way to have:
oR(W () — W(§j+1) <0 (8)
for any ordered pair of integration variables (with= x). Such a path of integration is then
called canonical.

The Langes-term appearing in (6) and in (7) is necessary to ensure all the integrals in (5)
converge wheny is a first- or a second-order pole §fx, %) or when solutions (4) are to be
continued to such poles. It follows from (6) that each such a pptkiemands a contribution to
8(x) of the form(2(x — xo)) 2, as has been already assumed in the corresponding construction
of §(x). We have also noticed earlier that the latter construction can be performed in general
with the help of the Mittag—Leffler theorem. In practice, howedér,) can be guessed very
frequently once the explicit form @f(x, 7?) is known (see [11] and appendix D, for example).

The constructions (4)—(7) have been performed liytan and Fiman [3] with the help of
the change-of-variable procedure when the contributiodgxfand f (x) to g (x, 7%) emerge
as a result of this procedure. This construction suggests, however, that there must be room to
introduce to solution (4) a suix) + f (x) as its free parameter independent of any change-of-
variable procedure. In appendix B we show that indeed this is the case and the constructions
of Frdoman and Fdman as well as the ones in (4)—(7) simply make use of this freedom.

w(x)

(6)

and

3. Fundamental solutions and their properties as functionals oV (z) and f(x)

It is clear that the poles df (x) and f(x) are also the singular points for each of the three
factors of the representation (4) for the solutidnsx, 7). However, since the latter satisfy the
Schidinger equation (3) only the singularities of the poteritiat) can affect (and they do!)
the holomorphicity of¥ (x, z) at these points, i.e., at the singular pointsf@k) which do
not coincide with those of (x) all ¥, (x, k) have to be analytical. But, by their construction,
W, (x, h) which have been defined at the latter points vanish at these points together with their
first derivatives. It means that all thesg(x, %) have to vanish identically. (In fact it is the
third factor of these solutions in (4) which vanishes identically).

Animportant conclusion which follows from the above discussion is that the constructions
of W, (x, ) in the sectors corresponding to these singular poinfg of which do not coincide
with those ofV (x) can be neglected, i.e., we are left only with the solutions generated by the
sectors defined by the genuine singularities of these solutions coinciding with thgge)of

Our initial assumption that, differs from any double pole of (x) is naturally related to
the fact that in general the solutions (4)—(7) cannot be constructed at such poles even formally
because the integrals in RHS of (5) are divergent at these poles. Contrary to the second-
order poles oW (x), the latter divergences cannot be compensated, as is seen from (6), by the
appropriate Langer term different froif(x) itself. If, however, the latter possibility happens
then the coefficient at each double polefafc) would have to be equal té. But then the
fundamental solutions constructed at these poles again have to vanish identically for the reasons
discussed above.
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Among all the singularities of (x) there are simple poles which have to be distinguished
in our discussion. This is because the sectors determined by these singularitieependent
(this dependence is introduced by the Langer term) and shrink to pointsiwher0. (The
limit points are of course the actual positions of the simple poles themselves as the singularities
of V(x)). Because of that the solutions (4)—(7) constructed in these sectors differ from the
remaining ones in their properties (they are not Borel summable, for example, see appendix C)
and therefore only the latter will be investigated further.

Therefore, we consider as fundamental soluti®péx, /) only those defined by (4)—(7)
which are constructed at all the poleslofx) (including that at infinity) except its simple ones.

The following are the properties of the fundamental solutions.

(1) In a domainD, of the x-plane where condition (8) is satisfied (the so-called canonical
domain) the series in (5) defining, is uniformly convergent. y; itself satisfies the
following initial conditions:

xk(xo) =1 and Xi(x0) =0 9)
corresponding to the equation:

h [~ h_ 1
Xe(x) =1— %/ dy w () xx(y) — %é*?(x)xk’(x) (10)

this function has to obey as a consequence of thedSamger equation (3) and the initial
conditions (9).

(2) The fundamental solutiod, (x, #) defined in the sectd; and continued to the canonical
domainDy, (S, C Dy) has there the following two basic properties:

(a) It can be expanded P into a standard semiclassical series obtained by iterating
equation (10) and taking into account the initial conditions (9);
(b) The emerging semiclassical series is Borel summabig io the solution itself.

(3) The fundamental solutions are pairwise independent and collected into a full set they allow
one to solveany 1D problem.

Let us note also that the fundamental solutions seem to be distinguished by the property
(b) above, i.e., they seem to be the unique solutions to the8ictyer equation (3) with this
property at least for the polynomial potentials [7]. The property (b) has been proven earlier
for the polynomial potentials [8] and for the meromorphic ones it is proven in appendix C.

4. Standard semiclassical expansions and Borel summability of fundamental solutions

By a standard semiclassical expansionfarve mean the following series:

_ oh\"
X)) ~ChY (—7) K ()
n=>0
ko(x) =1
x - &n N &3 . &2 . N
e (x) = / d&, D(&,) dsnle@nfl).../ d& D(&) | &1 (G2 (6D (G *(ED)”

Xo X0

+G72(ED(B(ED + f(ED)) n=12...

11)

with

~ 1 — d2 1 — 1 —
D(x) =G 3(x, hz)@cﬁ(x, B2+ G2 (x, B (S(x) + f(x)) (12)
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where

ch) = C, —%>n 13

@ ; ( 5 (13)

and where the choices of a poigtand constant§,, k = 1, 2, ..., are arbitrary. However, for
the particulary, (as defined by (5), for example) these choices are of course definitgigif
given by the lower limit of the integrations in the expansion (5) thém) = 1). Nevertheless,
evenin such cases the choicecgtan be arbitrary whilst the emerging corresponding constants
C\ depend somehow ary [7].

The representation (11) is standard in a sense that any other one can be brought to (11) by
redefinitions of the constantg . Therefore, any semiclassical expansion can be uniquely given
by fixing xo and the constants,. Conversly, multiplying a given semiclassical expansion by
an asymptotic series as defined by the last series in (11) with other corGtarts= 1, 2, . . .,
one can obtain any other semiclassical expansion.

As we have mentioned above, the semiclassical serieg ferBorel summable fox
staying in the secta$; wherey is defined. In fact this summability takes place not only inside
acircleR(G™H* = (2R) ! of theh-plane demanded by the conditions of the Watson—Sokal—
Nevanlinna theorem [10] but rather in the cir¢lé < &g of the i-plane cut along the radius
|argh] = %m.

Let us now make a crucial observation that a solutiQx, 7z) constructed at the singular
pointxo for a given functionf (x) # 0 and a solutionV; (x, ) constructed at the same point
xo but corresponding to the choig&x) = 0 both satisfy the Scbdinger equation (3) with the
same potentiaV (x) and therefore have to coincide with each other up to some multiplicative
h-dependent constady, (%) (see appendix B for a proof of this statement), i.e.:

U (x) = C () Wi (x) k=12, ... (14)
with C, (h) given by
/ 0 fx) d ]
X
5 Vg() TR () + /g (x) +BP8(x) + B f (x)
where the coefficient (#) was calculated by taking a limit — x on both the sides of (14).

It follows from (15) thatCy (k) is holomorphicat2z = 0 and because of that its Taylor
series at this point is trivially Borel summable.

The equality (14) proves therefore that the solution on its LHS can be obtained by
multiplying the solution on its RHS by the constafit(%), then making the semiclassical
expansion of this product and next summing agdeBorel the resulting semiclassical series.

Our main conclusion, however, which follows from the discussion of the previous section
and from the last reasoning as well is that the generality of the constructions of fundamental
solutions containing an arbitrary functigf(x) is only apparent, i.e., the most ‘economical’
forms of these solutions and of the Stokes graphs corresponding to them are those obtained
for f(x) = 0. Namely, the corresponding Stokes graphs are then composed from the minimal
number of Stokes lines and sectors.

Nevertheless, introducing the functigiix) to the fundamental solutions is not completely
useless and it can help in some situations [11]. Some advantages which follows from using
the f-function depending oh are also discussed in section 6.

(15)

Ci(h) = exp [aﬁ

5. Change of variable as Borel resummations

As he have mentioned earlier, the constructions (4)—(7) of the fundamental solutions were
originally performed by Fdman and Fsman using the change-of-variable procedure in the
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Schibdinger equation (3). Namely, putting= x(y) we keep the form of the Scbdinger
equation (3) unchanged if simultaneously we make a substitufign) = x/‘%(y)\ll(x(y)),
so thatQ(y) corresponding ta@ (y) in its Schibdinger-like equation is given by:

X(y)  3x"2(y)
() 2x(y)

1,1 [x’”(y)_gx”z(w} 1

1_
0 = q(x(Y)x?(y) — Ehz [

=q(x) (16)

y2(x) 20 | X)) 2x%(y) | y2x)

wherey(x) is a function inverse ta@(y). The expressions in the parentheses in (16) are called
the Schwarzians (of(y) and ofy(x), respectively).

It follows from (16) that to have (y) meromorphic in the-plane we have to assume also
some analytic properties afy). The meromorphicity ok (y) would be enough for this goal
but it could limit excessively a range of allowedy) (see appendix D). Therefore we assume
the allowed family ofx(y) to depend o (x) in a sense that the family is a collection of all
the complex functions of which provides us with both (x(y)) andx’?(y) as meromorphic
functions ofy. It is then easy to check that this assumption is sufficient not onl\Dfor)
to be a meromorphic function of but also for the Schwarzian ¢f(x) to be a meromorphic
function ofx. (The last property of this Schwarzian is important when we come back both to
the initial variablex and the initial wavefunctiod (x)).

Let us characterize a possible singularity structure of the inverse fungtionand its
derivative.

Sincex’?(y) is meromorphic then the possible singularities@k) (= 1/x'(y)) at finite
pointsyp = y(xo) are branch points of the tyge — xo) /"*2, n > 1, (wherex?(y) has an
nth order root). It is, however, easy to check that whgicoincides with some pole af(x)
then to kee (x(y)) meromorphic ayo we have to assumeto be even. Therefore, itis rather
x'(y) itself (than its square) which is then holomorphiggt

If x"2(y) vanishes whery escapes to infinity (in some direction on thglane) so that
x(c0€?) = xq, Wherexp can be finite or infinite, we shaflssume that y’2(x) approaches
infinity according to the rulesy’?(x) ~ (x — xo)~2, for finite xq, or y’?(x) ~ x¢ for the
infinite one, with positivex > % in the first case and witlh > 0 in the second one. The last
assumptions are in accordance with the meromorphicity of the Schwarzian derivatiwe .of
Of course, the last assumptions still limit somehow a family of the functign® which can
be used in the change-of-variable procedure.

Now, we can apply the procedure of the previous section to construct the fundamental
solutions for® (y) choosing, however, their most ‘economical’ form (i.e. puttifig) = 0 in
(2)). Of course we need not do it in all, but only in those singular pointg @f) which are
images of the corresponding singularities;0f) since we want to come back to the original
wavefunctionsyy (x).

Let us review therefore relevant possibilities.

If for some finite singularityrg of g (x) (being neither its simple nor a double pole; see,
however, a further discussion) its image= y(xo) is finite then the corresponding singularity
of Q(y) atyp is again a pole of the same or higher order (depending on the lowest order of the
derivative ofx(y) which does not vanish at).

A simple pole ofy (x) with a finite image survives as a simple one f(y) if x'?(y) does
not vanish at this pole. Otherwig2(y) gains a double pole at the corresponding point from
the Schwarzian af (y).

A double pole ofg(x) in the case considered always survives as a double ong (for
no matter what the order of the root.of(y) at the corresponding point is.

x=x(y)
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If the image of a finite singularity, of ¢ (x) lies, however, at the infinity of the-plane
then it follows from our assumption thatapproaches the infinity as — xo) ~*%, fora > 2,
or as logx — xp). In the first case it can happen, however, that at the infinite image of
Q(y) vanishes sufficiently quickly so that the corresponding action defined by it is finite at
the infinity. This takes place for example when the order of the polg.of at xg is less than
2a. Therefore in such a case a corresponding fundamental solution cannot be defined at this
infinite point.

If xo is an infinite singular point of (x) with its image being also infinite point of the
y-plane then, according to our assumption, the latter infinity is a singular poihtofif g (x)
diverges faster than some powenwof

Taking all these into account we see that at each double and higher-order p6te tife
image of which survives as a singular point@fy) we can construct the following fundamental
solution to the Sclirdinger equation (3):

\ik:(y/ZQ(y(x)))—iexp[% / \/y’z@)é(y(s))ds}zk(ym) k=12.. (17

wherej; (y) is constructed according to (5)—(7) by making there substitutioasy (= y(x)),
8(x) = 8(), ¢(x) = Q(y), w(x) = &(y), W(x) - W(y) andxo— yo(= y(xo)).

The corresponding(y)-term can be constructed only from those double polggd©f) which
are finite images of the corresponding double poleg(®j, as is assumed from now on.

The form of the solution (17) shows that the change of variable leads us again to some
fundamental solution i.e. it keeps the form (4) of these solutions.

Comparing the constructions (4)—(7) with (16) we can make the following identification:

< po o 3Y0) L 1y")
§(x) + f(x) =68(y(x)y“(x) 4770 *5 o

It follows from (18) that to have its RHS as a holomorphic function efe should have
to assume additionally the meromorphicity &fy (x)) as a function ofc. This assumption
restricts still more the allowed family of(x). However, we shall see below that the limited
role of the change-of-variable procedure when applied to the fundamental solutions will allow
us to forget about thé(y)-term in these cases, so that the assumptions made by us earlier
about the transformationgy) are still sufficient.

We show below that under the assumptions we have made in this section the LHS of (18)
is reconstructed by its RHS.

First, let us note that the Schwarzian term in (18) generates double poles in all the finite
points of thex-plane wherey’(x) is singular. The coefficients at these double poles are
determined by the power indeces of these singularities. As arule the values of these coeficients
are not equal t(%. Note, however, that the double poles generated in this way can be ignored
if they do not coincide with the singularities gfx).

In the opposite case, however, when some of the double poles of the Schwarzian coincide
with some of the singularities af (x), we have to check whether they contribute to the
RHS according the rule described in section 2. Let us consider, therefore, the corresponding
possibilities listed earlier.

(18)

(1) xo is a double pole of (x) andyy = y(xp) is finite. Thenyg is also a double pole for
O(y) and is therefore corrected by the Langer téitn). It is then easy to check that
this term (multiplied byy'?(x)) together with the Schwarzian contributes exactly the term
(2(x — x0))~? to the RHS of (18);

(2) xo is a double pole of (x) with the infinite image. Then this image is, of course, not
represented in the Langer tedty). This infinity is then a singular point af(y) if y
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runsto it as logx — xo). To the RHS of (18) contributes the Schwarzian only and one can
check that it is again the ter@(x — xo))~2;

(3) xo is a higher (than the second) order polg;ot) with the finite image. Then only the
Schwarzian contributes to the RHS of (18) with its appropriate second-order pole so that
the corresponding structure of the LHS at this pole is kept;

(4) xois a higher-order pole with the infinite image. Th@iy) vanishes at this image and the
corresponding action is finite—there is no a fundamental sol@ion to be constructed
at this infinite point;

(5) xois an infinite singular point of (x) and is transformed by(x) into an infinite singular
point of Q(y). It is then easy to check that the Schwarzian does not contribute(ét
vanishes) and the point remains a singular one at leagtfor Therefore the singularity
structure of the LHS of (18) is maintained.

The possibilities (1)—(5) above exhaust all the relevant cases and prove in this way our
statement that the RHS of (18) has the same singularity structure as its LHS up to these
singularities ofy (x) which are transformed into regular points@fy) and its actions.

It is worth noting here that, as follows from the case (2) above, a part of the Langer term
on the LHS of (18) is reconstructed by the Schwarzian on the RHS so that the equality (18)
cannot be split into two others, for the corresponding deltas and the rest.

Thus we have shown that choosing) properly we can recover by the change-of-variable
procedure the general structure of the fundamental solutions described by (4)—(7).

Nevertheless, it seems to be obvious that the direct constructions of the Langé(tgrm
as well as the corresponding functigiix) (if necessary for some reasons) is much simpler
than looking for the correspondingx) by constructing:(y) (as a meromorphic function) and
trying to invert the latter.

Therefore a question arises about an advantage of making a change of variable in the
context of looking for the fundamental solutions. If we assume that we cafi(@iitequal to
zero, then such an advantage can be connected with the possibility of constructing the Langer
term in a way different than the one relied on the Mittag—Leffler theorem.

Namely, we can try instead to constructya= y(x) with the property to escape
logarithmically to infinity each time whem approaches a position of some double pole of
q(x). For this goal we can put = logz(x) and construct(x) as a holomorphic function of
x having its unique simple roots at all the double poleg@f). The latter construction can be
performed using the Weierstrass product theorem [19]. Then the Schwarziar) girovides
us with the desired Langer term. By this construction, however, the appearance of the residual
f-function is in general unavoidable. But if we want to keep only the emerging Largem
we can of course discard the residyfafunction. A simple example of such a construction is
given in appendix D.

Finally, needless to say, it follows that the fundamental solutions obtained with the help
of the change-of-variable procedure described above are Borel summable and, as follows from
section 4, can be obtained as the Borel resummation of the other ones multiplied by suitably
chosem-dependent constants.

Of course, it seems to be obvious that it is not a good idea to get the effect of changing
variable in the latter way. Instead we can consider the above relation of the variable
transformation to the Borel resummation of the fundamental solutions, i.e. to the operation
which is intimately connected with the semiclassical expansions, as an explanation of why
it could improve many semiclassical approximations. The well known Langer substitution
in the case of the Coulomb potential serves here as the most famous example [1, 2]. Note,
however, that thexactness of the corresponding JWKB formula for the Coulomb case is
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not a direct consequence of this substitution but rather a result of a hidden symmetry of the
Coulomb potential displayed after another change of variable in thé8idger equation with
this potential [11].

6. Change of variable and exactness of JWKB quantization formulae

The above-mentioned correcting properties of a change of variable in thidBuer equation

can of course, be discussed equivalently in terms offtfanction introduced in section 2,
which is even more convenient. Let us raise the question of how far the semiclassical results
can be corrected by choosinfyx) properly. By these corrections we mean a decreasing
contribution to the semiclassical formulae of the third factor of the representation (4) of the
fundamental solutions in favour of the first two.

It follows from (4)—(7) and (14) modelling (x) that we can change all the three factors.
The question is therefore whether it is possible to chgbge in such a way as to put the
corresponding -factors equal to 1 (the latter number being the limiting form of these factors)?

To answer the question consider equation (14), substituting there the corresponding forms
(3) of the wavefunctiong/, (x) and W, (x). The discussion can be made more transparent by
using the following exponential representation fQ«x, #) and x, (x, ) (the latter functions
correspond to the wavefunctiolg (x) and W (x), respectively):

wed=en( [(aend)  uah=-eo [ aena) 19)
so that
2 Xixh) — X h)
Jh) = —T——= Jh) = —. 20
Pr(x, h) PR pi(x, h) PR (20)
Then the following relation comes out from the equality (14):
o f(x)
Jh) = Jh)+oh
P T + Vi, T + 727 )
R G(x,R?) fe Y
_— ) 21
4 q(x,B%) + R f(x) (c}(xfz%) @D

It follows from (20) that bothg, (x, %) and o (x, &) are Borel summable and from (21)
that their Borel transforms differ by a function holomorphic on the whole Borel plane (since
both the functions’ (x) andé (x) areh-independent). Therefore it is clear that one cannot find
such f (x)) to causeo, (x, i) to disappear, i.e., one cannot be leftdip(x) with its first two
JWKB factors only. This is becaugg(x, &) is singular ati = 0.

However, makingf (x) alsoi-dependent but choosing it holomorphichat= 0 we can
achieve a result when the firgstterms of the semiclassical expansionmfx, %) vanish.

The latter is possible globally (i.e. independentlykpince the semiclassical expansions of
o (x, h) arek-independent (i.e. these expansions do not contain any integration.oipthee,

see for example [16]). One of our earlier paper is a good illustration of this possibility [6] (see
also a comment below).

To achieve the goal of vanishing(x, ) we would have to us¢(x, &) as singularai = 0
and therefore expected to satisfy all the necessary conditions of the Watson—Sokal-Nevanlinna
theorem to be Borel summable. In such a cg&e, ) becomes, similarly t@, (x, &), sector
dependenti.e. within the class of the Borel summable functions there is no possibilty to define
a global y(x, #) which could provide us with¥, (x, &) deprived of itsy,-factor for all k
simultaneously. In a more obvious way one can conclude this from (20) puttingdherer)
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equal to zero and then treating the equation obtained in this way as the differential one for
f(x, k) wheregy (x, h) is assumed to be given. However, for any two differetitere are two
different 5 (x, #) and in consequence two different solutions fd, #) have to emerge.

Needless to say, the above negative result for the existence of the corresponding function
f(x,h) is also negative for the respectivéx, #) which can be obtained as a solution to
equation (18) and which changes the variable in the@thger equation (3).

Because of (14), the last result can also be expressed in termgwefidEendent constants
present in this relation. Namely, it follows from the above discussion that there is no choice
of the constant€’;, which could cause all the correspondingto be reduced to unity if all the
constants as given by (15) are to be defined only by one glpbalr) (or, alternatively, by
somey(x, i) realizing the underlying change of tirevariable).

Nevertheless, itis always possible to make such a global choi¢eof:) (or equivalently
y(x, k) or the constant€}) to produce simultaneously all the fundamental solutions for which
the series in (5) start with an arbitrary high powenofOf course, this is the case ¢ix, )
holomorphic at: = 0. Such a choice corresponds to a total effect of repeating changes of
variable when for each subsequent Schinger-like equation a new independent variable is the
actioni.ey’?(x) = ¢(x). The ‘lacking’ powers ofi are collected then ity'>(x, &) O (x, R))"i
and in the corresponding exponential factors of the solutions (4). These two factors are then
the sources of new JWKB approximations generalizing the conventional ones [6].

The impossibility to reduce the form (4) of the fundamental solutions to their first two
factors by choosing properly somféx, ) (the same for all the solutions) has an immediate
consequence for obtaining the exact JWKB formulae for quantization of energy levels. Namely,
quantizing the levels in a potential well it is impossible, in general, to get the quantization
formula in the pure JWKB form:

exp[% i \/CI(x) +h%8(x) + W2 f(x, T) dxi| —_1 2

by choosingf (x, i) properly. The cases where this is possible are rare and are related rather
to some particular symmetries of potentials considered [11].

To show this let us quantize a 1D quantum system with the help of the fundamental
solutions (it has been described in many of our earlier papers [1, 13, 14, 16]). Such a system
can be defined by describing positions and orders of poles and ropts,d) but instead of
taking some particular example of the latter we prefer to définer?) by such a description
stressing in this way its arbitrariness as well as the potential generality of arguments.

For simplicity we shall assume, however, that after a change of variable the effective
potential which emerges has only one absolute minimum so that we can choose the quantized
energy level to lie in the well with this minimum and below the rest. Then, there are only
two real turning pointsiy, x, of §(x, %) whilst the rest of them are complex and conjugated
pairwise (we assumg(x, z%) andE to be real). We assume also that the problem has been
limited to a segment; < x < z» at the ends of whic (x, 7?) has poles. But if we wish we
can push any of; » (or both of them) toroo respectively.

To write the corresponding quantization condition for eneryand to handle
simultaneously the cases of second- and higher-order poles we agdorbe the second-order
pole andz; to be the higher ones.

It is also necessary to fix to some extent the closest enviroment of the real axis of the
x-plane to draw a piece of SG sufficient to write the quantization condition. To this end we
assumes andxs as well asc, andi, to be another four turning points arnglandzs another two
second-order poles @fix, 7?) closest to the real axis. We assume also a possible divergence
at infinity. Then a relevant part of the Stokes graph can look as in figure 1.
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Re x

Figure 1. The SG corresponding to general quantization rule (23).

There is no unique way of writing the quantization condition corresponding to the figure.
Some possible three forms of this condition can be written as [8]:

oo 7§ ot oo i e -

Fea®ins®)  fana®ias(h)

X1-3(M) X23(h) X1-3(M) X2-a(h)

(23)

wherej_. ;(h), k, j =1, 2, 3, 4 are calculated far — z; with the help of formula (5), i.e.
Xi—j(h) =lim._ . X (h) along a canonical path. The closed integration gatis shown in
figure 1. In the figure the pathg .3, j»_3, etc are the integration paths in formula (5)
between the singular pointg and zs, z, and zs, etc respectively, whilst the wavy lines
designate corresponding cuts of th&®iemann surface on which all the fundamental solutions
are defined.

The condition (21) ieexact Its LHS has just the JWKB form. If we substitute each
Xk—j(h) in (23) by unity (which these coefficients approach wher- 0) we obtain the well
known JWKB quantization rule (22) which, in general, is only an approximation to (23).

Now, since there is no suchgdobal f(x,h) (alternatively, anc-variable transformation
y(x, h)) by which all 3., ;(h) in (23) could become simultaneously equal to unity the RHS
of (23) cannot be reduced to unity by any sugfx, #) i.e. the JWKB formula provided in
this way by (23) is always only an approximation. As we have mentioned, some additional
symmetry conditions have to be satisfied by the ingi@l) to provide us with such an exact
JWKB formula [11].

7. Conclusions

In this paper we have shown that the Borel summable fundamental solutions tmfBger
equation with the meromorphic potentials can be modified by an almost arbitrary meromorphic
function and that this modification is equivalent to the appropriate Borel resummations of the
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unmodified solutions multiplied by properly choskrdependent constants. We have also
shown that such modifications are always equivalent to performing some change of variable
in the corresponding Sabdinger equation (3) when the derivative of the substituted variable
depends meromorphicaly on the new one.

We have also argued that the advantages of variable transformations when applied to the
fundamental solutions are rather limited and seem to provide us in the best case with the proper
form of the Langer terms.

The relation of the effect of a variable transformation in the fundamental solutions to
suitable Borel resummations of these solutions multiplied earlier by respéetiependent
constants explains a little about the mysterious improvement of the JWKB formulae obtained
as a result of such a change of variable.

On the other hand, we have also provided arguments that no such change of variable can
reduce an exact quantization formula to its pure JWKB form. The latter case can happen only
due to particular symmetry properties of quantized potentials [11, 21].
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Appendix A

The Maslov method is formulated for an arbitrary linear partial differential equation (LPDE)
having as its semiclassical partner a dynamical system with a finite number of degrees of
freedom [13]. Maslov’s semiclassical theory of solutions to the corresponding LPDE is
developed on the ‘classical’ objects known in the classical mechanics as Lagrangian manifolds
[13, 14]. Limited to the one-degree-of-freedom case and to the 18ictyer equation, the
Lagrangian manifolds are nothing but the 1D classical trajectories in the corresponding 2D
phase space. Exact solutions to the stationary@lihger equation having particular Dirac
forms (4) can be naturally redefined to live on the Lagrangian manifold corresponding to a
given energy. However, to cover by such a description the whole coordinate domain which
the corresponding wavefunctions are defined on, the imaginary time evolution of the classical
equations of motion has also to be switched on to take into account so-called ‘classically
forbidden regions’. The emerging Lagrangian manifold then contains branches corresponding
to the real time motions (performed in classically allowed regions) as well as to the imaginary
ones with the imaginary part of the momentum in the latter case playing the role of the classical
momentum. Of course, the semiclassical conditions for the considered global wavefunction
are the following: it has to vanish exponentially whign— 0 in the classically forbidden
regions and to oscillate in the classically allowed ones.

Unfortunately, the Dirac representation of these solutions considered as functions of the
coordinate cannot be defined globally on the above Lagrangian manifold, being singular at
points where the manifold branches making a matching procedure of the solutions defined
on different branches impossible. These singular points are, in general, called the caustic
ones but in the 1D case they are known as turning points. Maslov and Fedoriuk’s remedy
to solve this arising ‘connection problem’ is to change the coordinate variable around such
points into the corresponding momentum, i.e., to change the coordinate representation of the
wavefunction into the momentum one preserving the Dirac form of the solution. Assuming the
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wavefunction to be normalized, its latter representation can be given formally by the Fourier
transformation of the former. In the new representation the wavefunction is then regular at
the coordinate turning points of Lagrangian manifold (being on the other hand singular at the
emerging momentum turning points). The inverse Fourier transformation considered close to
a coordinate turning point provides us again with the solution in the coordinate representation
given on both the sides of the chosen coordinate turning point. As we have mentioned above,
the semiclassical limit condition for the latter solution is of course to vanish exponentially
(whenh — 0) on one side of the turning point and to oscillate on the other. This condition
determines the way the local solutions determined on both the sides of each turning point and
having the Dirac form are to be matched.

The above idea of matching the solutions on different branches of the Lagrangian manifold
does not seem to be effective for the exact solutions todiehger equation but it becomes
so when the solutions in their Dirac forms are substituted by their corresponding semiclassical
series. This is, in fact, the subject of the original approach of Maslov and collaborators.
Namely, in such a case the classically forbidden parts of the solutions disappeared completely
(being exponentially small) and the remaining ones are then given uniquely on the classically
allowed branches of the Lagrangian manifold. The matching procedure then connects only
two oscillating solutions separated by the corresponding turning point. The underlying Fourier
transformation then becomes effectively a point transformation determining the connection.
As is well known [13], such a semiclassical wavefunction continued through a turning point
changes its phase hy1l. (These changes are controlled in general by so-called Maslov
indices). Synthetically the whole operation is performed with the help of the Maslov canonical
operator [13].

Itis easy to note, however, that the necessity to use Fourier transformation disappears if it
is possible to somehow avoid turning (caustic) points on the way the wavefunction is continued
on. This can be achieved, for example, by enlarging the number of dimensions the problem is
formulated in. The complexification of the problem is one of such ways to be used [15]. In the
1D case this can be done effectively and without appealing directly to the semiclassical series
expansions by defining the problem on the complex coordinate plane and utilizing the notions of
Stokes graphs and fundamental solutions. In comparison with Maslov’s approach, the complex
coordinate plane (in fact the latter is rather a Riemann surface) corresponds to the complex
Lagrangian manifold endowed with the coordinate charts collected of all canonical domains
defined by the corresponding Stokes graph. To each canonical domain a fundamental solution
is attached having the corresponding domain as the maximal one where its semiclassical
expansion as given by (11) is valid. There is no necessity to construct and use the Maslov
canonical operator to continue (analytically) the fundamental solutions and to match them in
any domain of the plane. The Maslov indices gained by the fundamental solutions on the way
of their analytical continuations are provided by crossed cuts of the corresponding Riemann
surface. Therefore using the fundamental solution method in the 1D problems is completely
equivalent to the corresponding Maslov one in the semiclassical regime of the problem but it
has many obvious advantages over the latter with their use as the exact solution§thrgenr
equation being the first one. Other important properties of the method have been mentioned
and used in the main body of this as well as other papers [6-9, 11].

Appendix B

We shall show here that the form (4) of the fundamental solutions as defined by (5)—(7) is
independent of the change of variable procedure in thedBahger equation. The last method
was applied originally by Firman and Féman [3].
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To this end let us substitute the Dirac form (4) of the solution to the &fihger
equation (3). Using the notations of section 2 we get the following equation for-faetor
of (4):

1 2
G2 @)X () + %x/(x) +w(x)x (@) =0 (B.1)

where we have dropped for a while the sector indes irrelevant for the present discussion.
Multiplying now (B.1) by exg3Z |, G2 (&) dg) we get:

(C?‘%(x)x/(x)e%ﬂj:‘72(5)&)’ —w@)x(x)er kil (S)dé (B.2)

Taking now someegular pointyo of § (x, 2?) and assuming foy (x) the ‘initial’ condition
x(yo) = xo andy’(yo) = xg we can transform (B.2) into the following integral equation:

1 20
X() = X0+ %éo’%(l e hoit %) _ 02 e R0 )y ) de
Yo
(B.3)
with g (yo, h?) = Go.

The last equation is general, i.e., the choices of the functiénsand f(x) as well as
of the regular point yo are arbitrary. The equation can be easily iterated leading us to the
functional series for (x) which is convergent uniformly foR (o f" c]z) d¢ > 0 when the
condition (8) for the integration path is satisfied. We can getin this way atregelar point
yo Of G (x, R?) and for a given (but arbitraryy = 41 two independent solutions having the
Dirac form (4).

To get, however, the fundamental solutions from (B.3) we have to choose instead of the
point yg a singular pointg defining some sectdrand and to assumeto lie in this sector as
well as we to choose the functiofiér) and f (x) according to their constructions in section 2.
Then sincexg is now singular for the actions (7) the exponential function in the second term of
the RHS in (B.3) vanishes by this choice whilst the integral remains finite by the constructions
of both the Langer term and the functigiix). The consistency condition needs then also to
put x4 to zero in this case. Putting ygt = 1 we get the formula (5) by the infinite iteration
of (B.3) prepared in this way.

A crucial point for the results of section 3 is to note that at a given sector one can define
only one fundamental solution at the singular poi of this sector i.e. any two solutions
constructed in section 3, vanishing ferapproachingxg inside the sector and differing by
the choice of theirf-functions have to coincide with themselves up to some multiplicative
constant.

The last conclusion follows easily from the existence, as was mentioned above, of two
independent solutions of the Dirac form (4) for aregular point yo. We can take as these
solutions the ones constructed fftx) = 0 and satisfying the following two pairs of the
‘initial’ conditions: x (yo) = 1, x"(yo) = 0 andx (yo) = 0, x'(y0) = Z§(y0) = Zgo where
g(x) = g(x) +h?5(x). Then the two independent solutiops and ¢, to the Schadinger
equation (3) corresponding to the last conditions satisfy the following ‘initial’ conditions:

1 o Yo 1
$1(yo) =q04exp<ﬁ/ qz(§)d§>

1 __s 1 Yo 4
¢1(yo)=—zéo4ééexp<g / forde)+Taden(F [(aiox) ®.4
b0 =0 g0 = Zajen(F [ Tew)
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respectively.
Then a fundamental solutiod, (x) corresponding to the choice of soniéx) # 0 is a
linear combination of; and¢, given by:

Wi (x) = C1¢1 + Cogp2 (B.5)
whereC; andC; satisfy the equations:

Cci(h) = <1 +}72M)_4 exp[aﬁ/y0 & dx:|xk(yo)

) VG +/qx)
[(—Eéo‘ i)+ ic}é) (o) * g ix;i(yo)} eXp[oE S (N dx] (8.6)
4 h NI +/G(x)

I e S AW L
- 4q0 qO qu 1 E ‘ZO 2-
It follows now from the last equations that whegmapproaches the singular poirtthen
C, approaches the value given by (15) whilstvanishes. On the other hand itis easy to check
that both they -factors coresponding 1, andg, have the same limit wheyy — xq (they are
the solutions to the same integral equation (B.3) which comes out when xo). This limit
is given by (5).

Appendix C

We shall show here that the property of the fundamental solutions to be Borel summable in their

sectors established earlier for the polynomial potentials [8] is valid for the meromorphic ones

as well. For simplicity, we shall demonstrate it for some simple but representative potentials

since the basic method of the proof can be also applied to a general meromorphic potential.
The potentials we are going to consider are the following:

o
Vl(x)=——+£2
a By
o
=Tt s (C1)
a B
Vax) = ——+—
X X
o, B, y=>0

Choosing the above signs®f 8, y we want to create a possibility for the bound states to
exist, considering this as a rather typical situation for the kind of problems being investigated.
Let us consider first the potenti&b(x). Conclusions which follow from this case shall
be shown by considering the fourth-order pole to be independent of the pole order. The only

exception is the case of the double pole which has to be considered separately.

The potentiaV,(x) is shown in Figure 2). Assuming the ‘ecomomigj(x)(= V2(x)—E)
corresponding to it with its negative eneriylying, however, above the right local minimum
of V,(x) we get the corresponding Stokes graph ontfane shown in figure Bj.

It is now convenient to make the Langer substitutioa- € to move the singularity of
Vo(x) atx = 0 to the left infinity of they-plane and to consider an equivalent problem on the
latter plane with the new (v, 7?) given, according to (16), by:

72
() = —we' +ye ™ — B+ p c2)

and with the corresponding Stokes graph shown in figure 3.
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Figure 2. The potentialVz(x) (a), and the corresponding Stokes graph (

The fundamental solutions (as well as all other solutions) corresponding to the potential
Vo(x) are defined on an infinitely sheeted Riemann surface branching=af. The Stokes
graph of figure 2§) corresponds to one of the sheets cut along the real negative half-axis. On
the remaining sheets, however, the Stokes graph looks the same.

There are four sectors on each shefety(, Ag, A; andBg on the sheet of figure 2(b)). The
two of them (@A _; andA;) touching the corresponding cut continue (in opposite directions) to
the neighbouring two sheets.

Therefore there are infinitely many sectors of the above two typeand B) on the
considered Riemann surface. Under the Langer transformatiefog x this Riemann surface
unfolds into the single-plane with the images of the sectors of the sheet of figusestown
in figure 3 (the corresponding sectors being denoted by the same characters). The sectors of
the remaining sheets are distributed periodically onytmpane.

It is obvious that the fundamental solutions constructed orythane according to the
Stokes graph of figure 3 are in one-to-one correspondence with the respective fundamental
solutions on the-Riemann surface (the latter can be obtained from the former by formula (17))
and this correspondence coincides with the one between the sectors. Thus in this way the
fundamental solutions corresponding to all the sectors of theBypé figure 2f) correspond
to the fundamental solutions defined in all the sectors lying in the left half of-fflane whilst



972 S Giller and P Milczarski

Imy
B., N : 4ri Ad
/ 3mi As
=" T i A1
\ Rey
B / y2 ¥s Ao
Y1 i Ay
>
/ wzni A-z
-3 A.a
Bz\ ‘ A-4
/ il \

Figure 3. The Stokes graph correspondinggx) = V (x) — E after the subtitutionr = €.

the remaining fundamental solutions of thdRiemann surface (of the type_;, Ap andA;)
are defined in the sectors of theplane lying in the right half of the plane.

Itfollows further from (17) that the Borel summability of the fundamental solution defined
on thex-Riemann surface is equivalent to the corresponding summability of the fundamental
solutions defined on the-plane. The Borel summability of the latter solutions follows,
however, directly from the Stokes graph of figure 3.

To show this, let us first note that all the sectors as well as the fundamental solutions defined
on thex-Riemann surface were unified by the Langer transformation i.e. op-fii@ne their
properties are similar. In particular they behave similarly under the rotation ih-giiane
around the point = 0. Namely, the asymptotes of the Stokes lines running to the left (right)
infinity of the y-plane move down (up) by¢2(¢) when arg:p increases by whilst all the
Stokes lines rotate in vicinities of turning poinst around these points by the apgte 2ll
these motions have opposite directions wherhatgcreases by.

It is now easy to realize that fas = 7= (with y kept fixed) the sectors as well as the
fundamental solutions corresponding to them transform into themselves according to the rules:

> A, > A1 —> ... > A4 > Ag—> AL —> ... —> A,_1 — A, — ...and
..~B,—->B ,4—...~B.1—>By— B —~ ...~ B,_1— B, — .... Thearrows
in the last transformations are to be reversapl # —r.

However, this is exactly the situation met in the polynomial potential case [8] and

therefore all the conclusions and constructions done for this case in the quoted paper (i.e.
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Figure 4. The Stokes graph corresponding¥g(x) in the x-plane &), and in they-plane after
transformationr = e” (b).

the holomorphicity of each fundamental solution with respeétitva sectord = {h : |h| <

ho, |¢| < =}, the calculation of its jump on the c@ = {h : |h| < ho, |¢| = 7} and the
applying of the Bender—Wu formula to calculate the (factorial) rate of grow of coefficients of
its semiclassical expansion) are valid here as well.

Therefore, our main conclusion for the case considered is that all their fundamental
solutions when expanded semiclassically in the sectors defining them are recovered by the
Borel resummations.

Consider now the potentidlz(x) andg(x) = Va(x) — E, with 0 > E > V3,
and make the Langer change of variable= €’ to get the resultingD(y) as Q(y) =
—ae ) +peY — Ee” + %2. The Stokes graphs corresponding to bgth) and Q(y) are
then shown in figure 4. It follows from the figure that the arguments applied previously to
the second of the potentials (C.1) are obviously still valid in the considered case and we can
again claim that the semiclassical expansions of the fundamental solutions corresponding to
the sectorsA,, and B,,, —o0 < n < +o0o, on both the figures 4a and 4b (the sectors on the
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figures denoted identically map into each other by the Langer transfosme”) are Borel
summable to the solutions themselves.

The case of the double pole potential is exceptional since as it is seen on figayes 5(
and @) showing the Stokes graphs correspondinggte) = —ax~ ! + x~2 — E and
0(y) = —ae? —Ee?¥ +p+ %2 (0 > E > Vi nmin), respectively, there is onlynefundamental
solution of theB-type (defined at the double pole) and infinitely many fundamental solutions
of the A-type. The semiclassical expansions of the latter are obviously Borel summable (to the
solutions themselves) whilst the Borel summability of the unigutype solution is unclear
at first sight.

Namely, looking at figure %) which represents the Stokes graph of figure) $6tated
by argh = +7/2 we see that there are two fundamental solutions which can be defined in
the half plane lying to the left from the vertical (anti-Stokes) line joining the turning paint
with all its periodic displacements. One of these solutions is constructed along the vertical
canonical pathy, (y) emerging from the ‘upper’ infinity of the-plane (see figure 5J) and
running downwards to the pointon the figure, whilst the second solution is defined on the
analogous pathy,;(y) running upwards. These solutions, by their construction, have well-
defined semiclassical expansions (11) and are limiting solutions of the one defined by the
canonical pathy (y) in the sectorB of Stokes graph of figure B when the latter graph is
rotated by ar¢g = +7/2.

Therefore we can conclude that the Nevanlinna—Watson—Sokal theorem for the unique
fundamental solution of sectoB are satisfied with respect to the desired domain of
holomorphicity (coinciding with the sectdiy = {% : |h| < ho, —% < argh < %}) and to the
desired semiclassical expansion whilst the desired factorial rate of growth of the coefficients
of its semiclassical expansion is still not established. Namely, because of the infinite series of
the turning points displaced vertically, we cannot rotate the fundamental solution of Bector
beyond sector; without destroying simultaneously the analyticity of its representation (4).

Therefore the method of Bender and Wu cannot be applied in this case.

However, we can use the results obtained for the case of the potéstiiato argue that the
discussed semiclassical coefficients have the desired factorial growth. Namely, we can note that
the fundamental solutiod attached to the sectd of figure 3, as well as the coefficients
of its semiclassical expansion, approach the solutionf sectorB of figure 5¢) and its
semiclassical coefficients, respectively, when the positive coeffigiémthe potentialV,(x)
vanishes. These limits are not uniformjin however. Nevertheless, since the semiclassical
coefficients of¥y are known to grow factorially, the same property has to have its limit for
y — 04. In this way the third demand of the Nevanlinna—Watson—Sokal is satisfied also in
this case, proving the Borel summability @l the fundamental solutions of the considered
case.

An extension of the arguments used in the above discussion to a general meromorphic
potential seems to be straightforward (by applying to a chosen particular pole the Langer
transform which maps the pole to the (left) infinity of theplane) although the unavoidable
proliferation of poles and turning points in theplane can make the corresponding analysis
laborious.

Appendix D
We consider here a simple example of the meromorphic poténtial = sin~2 x to illustrate

the action of the change-of-variable procedure in its form described at the end of section 5. A
z-function generating a corresponding functiogx) can be easily guessed to b@) = sinx
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Figure 5. The Stokes graph correspondingig(x): (a) in thex-plane, ) in the y-plane and )
in the y-plane rotated by ag= +m/2.
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and thereforey(x) = log sinx. Then a modification of (x) = V (x) — E to §(x, h?) by the
Schwarzian ofy(x) gives:
1, o1 3?1
sifx 4 sifx 4 co¥x’
One can easily recognize in (D.1) the assumed functional and meromorphic structure
of (1). The forms ofx’?(y) = €?/(1 — €?) and ofg(x(y)) = €% — E also satisfy the
corresponding assumptions about the transformat{@h done in section 5.

We can of course now discard tifeterm in (D.1) (equal te-3/(4 cog x)) to obtain the
resultingg (x, #?) in the form of Bailey [20].

G(x,h?) = (D.1)
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